Вырожденность генетического кода

ПОИСК

Вырожденность генетического кода

    ВЫРОЖДЕННОСТЬ ГЕНЕТИЧЕСКОГО КОДА. Соответствие нескольких кодонов одной аминокислоте. Замена в третьем основании кодона не всегда приводит к замене аминокислоты. [c.

520]

    Оказалось, что вырожденность генетического кода имеет несомненный биологический смысл, обеспечивая организму ряд преимуществ.

В частности, она способствует совершенствованию генома, так как в процессе точечной мутации, вызванной химическими или физическими факторами, возможны различные аминокислотные замены, наиболее ценные из которых отбираются в процессе эволюции. [c.522]

    ВЫВОД, ЧТО, по-видимому, код действительно является триплет-ным, причем кодирование начинается от определенной точки нуклеиновой кислоты. При этом большая часть трехбуквенных комбинаций соответствует определенным аминокислотам и лишь небольшая часть триплетов относится к бессмысленным. Число триплетов равно 4-4-4 = 64, т. е. значительно больше числа аминокислот. Некоторые из них, по-видимому, кодируют одну и ту же аминокислоту, т. е. код является вырожденным. Этот вывод согласуется с обнаружением в настоящее время двух и более типов растворимых РНК, специфичных к одной и той же аминокислоте. Вырожденность генетического кода может способствовать выживанию организма. Действительно, в случае невырожденного кода ошибка при репликации ДНК или при транскрипции должна скорее приводить к появлению бессмысленного триплета, чем в случае вырожденного кода. Следовательно, при невырожденном коде ошибки чаще вызывали бы прекращение синтеза соответствующего белка или образование незаконченных белковых цепей. Напротив, в случае вырожденного кода ошибки должны чаще приводить просто к замене одной аминокислоты на другую, что, как правило, не имеет серьезных последствий. [c.376]

    Итак, подытоживая сказанное, следует подчеркнуть, что, хотя конкретные схемы вырожденности генетического кода еще не известны, однако в настоящее время биологический смысл вырожденности ясен это избыточность информации, которая обеспечивает устойчивость кода к помехам внешней среды. [c.162]

    Поскольку РПК является линейным полимером, состоящим из нуклеотидов четырех типов, то всего имеется 4 = 64 возможных триплета (напомним, что важное значение имеет последовательность нуклеотидов триплета).

Учитывая, что в белках находят всего 20 различных аминокислот, можно сделать вывод, что большинство аминокислот должно кодироваться несколькими триплетами другими словами генетический код вырожден. Генетический код, представленный на рис.

3-15, оказался чрезвычайно консервативным в эволюции за небольшими исключениями он остается одинаковым у таких разных организмов, как бактерии, растения и человек. [c.132]

    Вырожденность генетического кода касается в основном третьего нуклеотида кодона и предполагает, что образование комплементарной пары между ним и соответствующим нуклеотидом антикодона не должно быть абсолютно строгим.

Как уже упоминалось, это явление принято называть неполным соответствием или качанием, поскольку в области взаимодействия последнего нуклеотида кодона с антикодоном допускается нестрогое связывание — качание .

Например, 2 кодона аргинина АСА [c.97]

    На генном уровне изменения первичной структуры ДНК под действием мутаций менее значительны, чем при хромосомных мутациях, однако, генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точковых мутациях. Поскольку в состав ДНК входят азотистые основания только двух типов – пурины и пиримидины, все точковые мутации с заменой оснований разделяют на два класса транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Из-за вырожденности генетического кода могут быть три генетических последствия точковых мутаций сохранение смысла кодона (синонимическая замена нуклеотида), изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация) или образование бессмысленного кодона с преждевременной терминацией (нон- [c.277]

    Анализ нуклеотидных последовательностей кодирующих участков ДНК более информативен, чем определение аминокислотной последовательности полипептидов, поскольку из-за вырожденности генетического кода изменение нуклеотидной последовательности гена может не сопровождаться изменениями аминокислотной последовательности соответствующего белка. И даже если известно, что [c.16]

    Определенная часть генных мутаций может быть отнесена к нейтральным мутациям, поскольку они не приводят к каким-либо изменениям фенотипа.

Например, за счет вырожденности генетического кода одну и ту же аминокислоту могут кодировать два триплета, различающихся только по одному основанию.

С другой стороны, один и тот же ген может изменяться (мутировать) в несколько различающихся состояний. [c.100]

    Вырожденность генетического кода позволяет использовать для всех 20 аминокислот кодоны, имеющие в третьем положении G или С. [c.280]

    В самом деле, из-за вырожденности генетического кода 25 % точковых мутаций не вызывают никакого эффекта, поскольку они попадают на нейтральные аминокислоты и поэтому не обнаруживаются 2—6 % обусловливают ytpaтy или изменение ферментной активности 70—75 % влекут за собой замену одной аминокислоты другой 25—28 % вызывают изменение зарядов [90, 100], что схематически показано ниже. [c.39]

    Изоакцепторные тРНК различаются своей первичной структурой. По-видимому, это определяется не только вырождением генетического кода (см. 9.6). В строении тРНК проявляются видовые различия. Установлено, что минорные основания имеют вторичное, а не генетическое происхождение — тРНК метилируется под действием фермента метилазы. [c.577]

    Проблема патентования молекул ДНК весьма противоречива.

Ведомство по патентам и товарным знакам США (РТО) отказало в выдаче патентов на частично секвенированные кДНК, поскольку в заявках отсутствовали конкретные данные о их практической пользе отказано было и в выдаче патентов на гены, идентифицированные с помощью гибридизационных зондов, которые были синтезированы исходя из опубликованных данных по аминокислотной последовательности. Позже решение РТО было отменено в суде на основании того, что вырожденность генетического кода не позволяет однозначно определить нуклеотидную последовательность кДНК исходя из данных об известной аминокислотной последовательности соответствующего белка, а следовательно, условие неочевидности, необходимое для патентования такого рода изобретений, выполняется. [c.541]

    Молчащие мутации. Если под мутацией в традиционном смысле понимают внезапное изменение признака, т. е. изменение генотипа, проявляющееся в фенотипе, то на молекулярном уровне любое стабильное наследуемое изменение ДНК рассматривают как мутацию.

Однако ввиду вырожденности генетического кода понятно, что не всякая мутация такого рода будет проявляться в фенотипе. Во многих триплетах изме- нение третьего основания остается без последствий ( молчапще мутации). Даже замена первого или второго основания триплета не всегда приводит к серьезным последствиям.

Хотя структуры высшего порядка (третичная и четвертичная) определяются первичной структурой белка (т.е. последовательностью аминокислот), разные аминокислоты играют в этой структуре не одинаково важную роль. Например, мутация АиС->ОиС ведет к замене изолейцина валином, т.е. к замене одной липофильной группы на другую.

Однако мутация Сии- ССи приведет к замене лейцина пролином, и последствием такой замены будет отклонение от нормальной пространственной конфигурадии полипептидной цепи, что может сильно изменить структуру высшего порядка.

Из этого понятно, что различные мутации в одном и том же структурном гене определенного фермента могут по-разному сказываться на его активности возможны любые изменения-от едва заметного снижения каталитического действия до полной инактивации. [c.442]

    Из-за вырожденности генетического кода обратный перевод не является однозначным. Однако сопоставление двух последовательностей аминокислот — мутантной и дикого типа — устраняет эту пеоднозлачность. — Прим. перев. [c.211]

    Прямое доказательство универсальности кода было получено при сравнении последовательностей ДНК с со-ответствуюшими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используются одни и те же наборы кодовых значений.

Однако состав оснований различных геномов сильно варьирует в противоположность относительному постоянству аминокислотного состава белков. Можно думать поэтому, что различные виды используют различающиеся характерные наборы кодонов-синонимов.

Действительно, наблюдаемое постоянство аминокислотного состава можно объяснить только вырожденностью генетического кода. [c.62]

    Первое основание антикодона определяет, считывает ли данная молекула тРНК один, два или три типа кодонов С и А узнают по одному кодону, и и О – по два кодона, I – три кодона. Итак, одна из причин вырожденности генетического кода заключается в неточности, или неоднозначности, спаривания ( качании ) третьего основания кодона. Именно в этом мы усматриваем основную причину распространенности необычного нуклеозида инозина в антикодонах. Инозин увеличивает число кодонов, которые способна считывать данная молекула тРНК (рис. 27.8). [c.95]

    СТО оказываются миссенс-мутациями (мутациями с изменением смысла), в которых последовательность кодирующего триплета оснований после замены кодирует уже другую аминокислоту.

Вследствие вырожденности генетического кода аминокислота, кодируемая мутантным геном, часто оказывается сходной с той, которая кодировалась родительским триплетом, в результате чего формируется фенотип ( leaky ) лищь с частично нарушенной функцией (определяемой обычно белком).

Такие штаммы имеют тенденцию спонтанно ревертировать к родительскому типу, проявляя таким образом генетическую нестабильность и частичную физиологическую неполноценность.

Значительная часть мутаций с заменой оснований представляет собой нонсенс-мутации (бессмысленные мутации), характеризующиеся тем, что кодирующий какую-либо аминокислоту триплет превращается в триплет, не кодирующий никакой аминокислоты.

В этом случае синтез соответствующего белка прерывается на измененном триплете, а образующийся незавершенный фрагмент белковой молекулы, как правило, не способен выполнять предназначенной исходному белку функции. Поэтому нонсенс-мутации фенотипически выражены, а способность ревертировать у них сохраняется. Мутации со сдвигом рамки возникают в случае вставки или делеции одного или нескольких оснований в молекулу ДНК- При этом происходит сдвиг рамки при считывании закодированной информации и как следствие — изменение последовательности аминокислот в белке мутантного штамма. [c.10]

    Транзиции происходят чаще, чем можно было бы ожидать, если бы замены оснований носили случайный характер. Любое нуклеотидное основание может заместиться в результате одной транзиции и двух трансверсий (рис. 5.25). Поэтому, если бы направление мутационного процесса было случайным, трансверсии происходили бы вдвое чаще, чем транзиции.

Однако из-за вырожденности генетического кода не все нуклеотидные замены приводят к аминокислотным заменам. В табл. 5.16 приведены данные о наблюдавшихся транзициях и трансверсиях различных типов. Транзи-ций происходит значительно больше, чем можно было бы ожидать в случае, если бы направление мутаций было случайным [1681]. [c.

190]

    Среди других факторов, оказывающих влияние на эффективность трансляции, следует упомянуть частоту использования кодонов при кодировании белков в структурных частях разных генов [131].

В настоящее время установлено, что использование синонимических кодонов (кодирующих одну и ту же аминокислоту) вырожденного генетического кода не случайно и отражает количественную представленность отдельных изоакцепторных тРНК в клетках организма.

С другой стороны, частота использования кодонов в разных генах одного и того же организма является эффективным фактором, регулирующим уровень экспрессии этих генов в процессе трансляции. Чем реже тот или иной ко- [c.114]

    Разные варианты полимеразных цепных реакций. Как мы уже говорили, для проведения НЦР необходимо знать нуклеотидные последовательности, фланкирующие амплифицируемый сегмент. Это подразумевает, что НЦР-метод может применяться ТОЛЬКО при наличии предварительно клонированных и секвенированных сегментов ДНК.

Однако с помощью относительно простых модификаций можно значительно расщирить возможности метода НЦР. В ОДНОМ из вариантов можно вьщелить определенный ген, если известна аминокислотная последовательность лищь короткого участка соответствующего очищенного белка.

Например, синтезировав праймеры ДЛИНОЙ 20 пар нуклеотидов на основании данных о последовательности двух концов пептидного сегмента длиной в 20 аминокислот, можно амплифицировать геномный фрагмент длиной 60 П.Н.

Вследствие вырожденности генетического кода при этом используют смесь праймеров с альтернативными основаниями в нужных положениях (разд. [c.361]

Смотреть страницы где упоминается термин Вырожденность генетического кода: [c.200]    [c.522]    [c.539]    [c.200]    [c.81]    [c.46]    [c.288]    [c.175]    [c.263]    [c.98]    [c.79]    [c.79]    [c.98]    [c.153]    [c.165]    [c.155]    [c.171]    [c.176]    [c.222]    [c.280]    [c.295]    [c.332]    [c.27]    Гены и геномы Т 2 (1998) — [ c.116 ]

Вырождение

коду

© 2019 chem21.info Реклама на сайте

Источник: //www.chem21.info/info/1408928/

Вырожденность генетического кода: общие сведения

Вырожденность генетического кода

Генетический код, выраженный в кодонах, это система кодирования информации о строении белков, присущая всем живым организмам планеты. Его расшифровка заняла десятилетие, а вот то, что он существует, наука понимала почти столетие. Универсальность, специфичность, однонаправленность, а особенно вырожденность генетического кода имеют важное биологическое значение.

История открытий

Проблема кодирования генетической информации всегда была ключевой в биологии. К матричному строению генетического кода наука продвигалась довольно неспешно. С момента обнаружения Дж. Уотсоном и Ф.

Криком в 1953 году двойной спиральной структуры ДНК начался этап разгадывания самой структуры кода, который побудил веру в величие природы. Линейная структура белков и такая же структура ДНК подразумевала наличие генетического кода как соответствия двух текстов, но записанных при помощи разных алфавитов.

И если алфавит белков был известен, то знаки ДНК стали предметом изучения биологов, физиков и математиков.

Нет смысла описывать все шаги в решении этой загадки. Прямой эксперимент, доказавший и подтвердивший, что между кодонами ДНК и аминокислотами белка существует четкая и последовательная соответственность, провели в 1964 году Ч. Яновски и С. Бреннер. А далее – период расшифровки генетического кода in vitro (в пробирке) с использованием техник синтеза белка в бесклеточных структурах.

Полностью расшифрованный код E. Coli был обнародован в 1966 году на симпозиуме биологов в Колд-Спринг-Харборе (США). Тогда и открылась избыточность (вырожденность) генетического кода. Что это значит, объяснилось довольно просто.

Раскодирование продолжается

Получение данных о расшифровке наследственного кода стало одним из самых значительных событий прошлого столетия. Сегодня наука продолжает углубленно исследовать механизмы молекулярных кодировок и его системных особенностей и переизбытка знаков, в чем выражается свойство вырожденности генетического кода.

Отдельная отрасль изучения – возникновение и эволюционирование системы кодирования наследственного материала. Доказательства связи полинуклеотидов (ДНК) и полипептидов (белки) дали толчок развитию молекулярной биологии. А та, в свою очередь, биотехнологиям, биоинженерии, открытиям в селекции и растениеводстве.

Догмы и правила

догма молекулярной биологии – информация передается с ДНК на информационную РНК, а после с нее на белок. В обратном направлении передача возможна с РНК на ДНК и с РНК на другую РНК.

Но матрицей или основой всегда остается ДНК. И все остальные фундаментальные особенности передачи информации – это отражение этого матричного характера передачи. А именно передачи путем осуществления синтеза на матрице других молекул, которые и станут структурой воспроизводства наследственной информации.

Генетический код

Линейное кодирование структуры белковых молекул осуществляется с помощью комплементарных кодонов (триплетов) нуклеотидов, которых всего 4 (адеин, гуанин, цитозин, тимин (урацил)), что спонтанно приводит к образованию другой цепочки нуклеотидов.

Одинаковое число и химическая комплиментарность нуклеотидов – это главное условие такого синтеза. Но при образовании белковой молекулы качества соответствия количества и качества мономеров нет (ДНК нуклеотиды – аминокислоты белка).

Это и есть природный наследственный код – система записи в последовательности нуклеотидов (кодонах) последовательности аминокислот в белке.

Генетический код обладает несколькими свойствами:

  • Триплетность.
  • Однозначность.
  • Направленность.
  • Неперекрываемость.
  • Избыточность (вырожденность) генетического кода.
  • Универсальность.

Приведем краткую характеристику, концентрируя внимание на биологическом значении.

Триплетность, непрерывность и наличие стоп-сигналов

Каждой из 61 аминокислоты соответствует один смысловой триплет (тройка) нуклеотидов. Три триплета не несут информацию об аминокислоте и являются стоп-кодонами.

Каждый нуклеотид в цепочке входит в состав триплета, а не существует сам по себе. В конце и в начале цепочки нуклеотидов, отвечающих за один белок, находятся стоп-кодоны.

Они запускают или останавливают трансляцию (синтез белковой молекулы).

Специфичность, неперекрываемость и однонаправленность

Каждый кодон (триплет) кодирует только одну аминокислоту. Каждый триплет не зависит от соседнего и не перекрывается. Один нуклеотид может входить только в один триплет в цепочке. Синтез белка идет всегда только в одном направлении, что регулируют стоп-кодоны.

Избыточности генетического кода

Каждый триплет нуклеотидов кодирует одну аминокислоту. Всего 64 нуклеотида, из них 61 – кодируют аминокислоты (смысловые кодоны), а три – бессмысленные, то есть аминокислоту не кодируют (стоп-кодоны).

Избыточность (вырожденность) генетического кода заключается в том, что в каждом триплете могут быть произведены замены – радикальные (приводят к замене аминокислоты) и консервативные (не меняют класс аминокислоты).

Легко посчитать, что если в триплете можно провести 9 замен (1, 2 и 3 позиция), каждый нуклеотид можно заменить на 4 – 1 = 3 других варианта, то общее количество возможных вариантов замен нуклеотида будет 61 по 9 = 549.

Вырожденность генетического кода проявляется в том, что 549 вариантов – это намного больше, чем необходимо для закодировки информации о 21 аминокислоте. При этом из 549 вариантов 23 замены приведут к образованию стоп-кодонов, 134 + 230 замены – консервативны, и 162 замены – радикальны.

Правило вырожденности и исключения

Если два кодона имеют два одинаковых первых нуклеотида, а оставшиеся представлены нуклеотидами одного класса (пуриновые или пиримидиновые), то они несут информацию об одной и той же аминокислоте.

Это и есть правило вырожденности или избыточности генетического кода.

Два исключения – АУА и УГА – первый кодирует метионин, хотя должен был бы изолейцин, а второй – стоп-кодон, хотя должен был бы кодировать триптофан.

Значение вырожденности и универсальности

Именно эти два свойства генетического кода имеют наибольшее биологическое значение. Все свойства, перечисленные выше, характерны для наследственной информации всех форм живых организмов на нашей планете.

Вырожденность генетического кода имеет приспособительное значение, как многократное дублирование кода одной аминокислоты. Кроме того, это означает снижение значимости (вырождение) третьего нуклеотида в кодоне. Такой вариант сводит к минимуму мутационные повреждения в ДНК, которые повлекут за собой грубые нарушения в структуре белка. Это защитный механизм живых организмов планеты.

Источник: //FB.ru/article/314147/vyirojdennost-geneticheskogo-koda-obschie-svedeniya

Генетический код

Вырожденность генетического кода

Генетический, или биологический, код является одним из универсальных свойств живой природы, доказывающим единство ее происхождения. Генетический кодэто способ кодирования последовательности аминокислот полипептида с помощью последовательности нуклеотидов нуклеиновой кислоты (информационной РНК или комплиментарного ей участка ДНК, на котором синтезируется иРНК).

Встречаются другие определения. Генетический код — это соответствие каждой аминокислоте (входящей в состав белков живого) определенной последовательности трех нуклеотидов. Генетический код — это зависимость между основаниями нуклеиновых кислот и аминокислотами белка.

В научной литературе под генетическим кодом не понимают последовательность нуклеотидов в ДНК у какого-либо организма, определяющую его индивидуальность. Неверно считать, что у одного организма или вида код один, а у другого — другой. Генетический код — это то, как кодируются аминокислоты нуклеотидами (т. е.

принцип, механизм); он универсален для всего живого, одинаков для всех организмов. Поэтому некорректно говорить, например, «Генетический код человека» или «Генетический код организма», что нередко используется в околонаучной литературе и фильмах.

В данных случаях обычно имеется в виду геном человека, организма и др.

Разнообразие живых организмов и особенностей их жизнедеятельности обусловлено в первую очередь разнообразием белков. Специфическое строение белка определяется порядком и количеством различных аминокислот, входящих в его состав.

Последовательность аминокислот пептида зашифрована в ДНК с помощью биологического кода. С точки зрения разнообразия набора мономеров, ДНК более примитивная молекула, чем пептид. ДНК представляет собой различные варианты чередования всего четырех нуклеотидов.

Это долгое время мешало исследователям рассматривать ДНК как материал наследственности.

Как кодируются аминокислоты нуклеотидами

1) Нуклеиновые кислоты (ДНК и РНК) — это полимеры, состоящие из нуклеотидов. В каждый нуклеотид может входить одно из четырех азотистых оснований: аденин (А, еn: A), гуанин (Г, G), цитозин (Ц, en: C), тимин (T, en: Т). В случае РНК тимин заменяется на урацил (У, U).

При рассмотрении генетического кода принимают во внимание только азотистые основания. Тогда цепочку ДНК можно представить в виде их линейной последовательности. Например:

…AAATGAACTTCA…

Комплиментарный данному коду участок иРНК будет таким:

…UUUACUUGAAGU…

2) Белки (полипептиды) — это полимеры, состоящие из аминокислот. В живых организмах для построения полипептидов используется 20 аминокислот (еще несколько очень редко). Для их обозначения тоже можно использовать одну букву (хотя чаще используют три — сокращение от названия аминокислоты).

Аминокислоты в полипептиде соединены между собой пептидной связью также линейно. Например, пусть имеется участок белка со следующей последовательностью аминокислот (каждая аминокислота обозначается одной буквой):

…MLFRSRWIMVPQHE…

3) Если стоит задача закодировать каждую аминокислоту с помощью нуклеотидов, то она сводится к тому, как с помощью 4 букв закодировать 20 букв. Это можно сделать, сопоставляя буквам 20-ти буквенного алфавита слова, составленные из нескольких букв 4-х буквенного алфавита.

Если одну аминокислоту кодировать одним нуклеотидом, то можно закодировать только четыре аминокислоты.

Если каждой аминокислоте сопоставлять два подряд идущих в цепи РНК нуклеотида, то можно закодировать шестнадцать аминокислот.

Действительно, если имеется четыре буквы (A, U, G, C), то количество их разных парных комбинаций будет 16: (AU, UA), (AG, GA), (AC, CA), (UG, GU), (UC, CU), (GC, CG), (AA, UU, GG, CC). [Скобки используются для удобства восприятия.

] Это значит, что таким кодом (двухбуквенным словом) можно закодировать только 16 разных аминокислот: каждой будет соответствовать свое слово (два подряд идущих нуклеотида).

Из математики формула, позволяющая определить количество комбинаций, выглядит так: ab = n. Здесь n — количество разных комбинаций, a — количество букв алфавита (или основание системы счисления), b — количество букв в слове (или разрядов в числе). Если подставить в эту формулу 4-х буквенный алфавит и слова, состоящие из двух букв, то получим 42 = 16.

Если в качестве кодового слова каждой аминокислоты использовать три подряд идущих нуклеотида, то можно закодировать 43 = 64 разных аминокислот, так как 64 разных комбинации можно составить из четырех букв, взятых по три (например, AUG, GAA, CAU, GGU и т. д.). Это уже больше, чем достаточно для кодирования 20 аминокислот.

Именно трехбуквенный код используется в генетическом коде. Три подряд идущих нуклеотида, кодирующих одну аминокислоту, называются триплетом (или кодоном).

Каждой аминокислоте сопоставляется определенный триплет нуклеотидов. Кроме того, поскольку комбинаций триплетов с избытком перекрывают количество аминокислот, то многие аминокислоты кодируются несколькими триплетами.

Три триплета не кодируют ни одну из аминокислот (UAA, UAG, UGA). Они обозначают конец трансляции и называются стоп-кодонами (или нонсенс-кодонами).

Триплет AUG кодирует не только аминокислоту метионин, но и инициирует трансляцию (играет роль старт-кодона).

Ниже приведены таблицы соответствия аминокислот триплетам нуклеоитидов. По первой таблице удобно определять по заданному триплету соответствующую ему аминокислоту. По второй — по заданной аминокислоте соответствующие ей триплеты.

Рассмотрим пример реализации генетического кода. Пусть имеется иРНК со следующим содержанием:

AUGGAUUCUACCUGGUUAUUGAAAAAUCAGUAG

Разобьем последовательность нуклеотидов на триплеты:

AUG-GAU-UCU-ACC-UGG-UUA-UUG-AAA-AAU-CAG-UAG

Сопоставим каждому триплету кодируемую им аминокислоту полипептида:

Метионин — Аспаргиновая кислота — Серин — Треонин — Триптофан — Лейцин — Лейцин — Лизин — Аспарагин — Глутамин

Последний триплет является стоп-кодоном.

Свойства генетического кода

Свойства генетического кода во многом являются следствием способа кодирования аминокислот.

Первое и очевидное свойство — это триплетность. Под ним понимают тот факт, что единицей кода является последовательность из трех нуклеотидов.

Важным свойством генетического кода является его неперекрываемость. Нуклеотид, входящий в один триплет, не может входить в другой. То есть последовательность AGUGAA можно прочитать только как AGU-GAA, но нельзя, например, так: AGU-GUG-GAA. Т. е. если пара GU входит в один триплет, она не может уже быть составной частью другого.

Под однозначностью генетического кода понимают то, что каждому триплету соответствует только одна аминокислота. Например, триплет AGU кодирует аминокислоту серин и больше никакую другую. Данному триплету однозначно соответствует только одна аминокислота.

С другой стороны, одной аминокислоте может соответствовать несколько триплетов. Например, тому же серину, кроме AGU, соответствует кодон AGC. Данное свойство называется вырожденностью генетического кода.

Вырожденность позволяет оставлять многие мутации безвредными, так как часто замена одного нуклеотида в ДНК не приводит к изменению значения триплета.

Если внимательно посмотреть на таблицу соответствия аминокислот триплетам, то можно увидеть, что, если аминокислота кодируется несколькими триплетами, то они зачастую различаются последним нуклеотидом, т. е. он может быть любым.

//www.youtube.com/watch?v=HQLuCRx4LR0

Также отмечают некоторые другие свойства генетического кода (непрерывность, помехоустойчивость, универсальность и др.).

plustilino © 2019. All Rights Reserved

Источник: //biology.su/molecular/genetic-code

Ваш Недуг
Добавить комментарий