Время кругооборота крови

Время кругооборота крови

Время кругооборота крови

Артериальный пульс.

Артериальный пульс – периодические расширения и удлинения стенок артерий, обусловленные поступлением крови в аорту при систоле левого желудочка.

Пульс характеризуют следующие признаки: частота – число ударов в 1 мин.

, ритмичность – правильное чередование пульсовых ударов, наполнение – степень изменения объема артерии, устанавливаемая по силе пульсового удара, напряжение– характеризуется силой, которую надо приложить, чтобы сдавить артерию до полного исчезновения пульса.

Кривая, полученная при записи пульсовых колебаний стенки артерии, называется сфигмограммой.

Особенности кровотока в венах.

В венах давление крови низкое. Если в начале артериального русла давление крови равно 140 мм рт.ст., то в венулах оно составляет 10-15 мм рт.ст.

Движению крови по венам способствует ряд факторов:

  • Работа сердца создает разность давления крови в артериальной системе и правом предсердии. Это обеспечивает венозный возврат крови к сердцу.
  • Наличие в венах клапанов способствует движению крови в одном направлении – к сердцу.
  • Чередование сокращений и расслаблений скелетных мышц является важным фактором, способствующим движению крови по венам. При сокращении мышц тонкие стенки вен сжимаются, и кровь продвигается по направлению к сердцу. Расслабление скелетных мышц способствует поступлению крови из артериальной системы в вены. Такое нагнетающее действие мышц получило название мышечного насоса, который является помощником основного насоса – сердца.
  • Отрицательное внутригрудное давление, особенно в фазу вдоха, способствует венозному возврату крови к сердцу.

Время кругооборота крови.

Это время, необходимое для прохождения крови по двум кругам кровообращения. У взрослого здорового человека при 70-80 сокращениях сердца в 1 мин полный кругооборот крови происходит за 20-23 с. Из этого времени 1/5 приходится на малый круг кровообращения и 4/5 – на большой.

Движение крови в различных отделах системы кровообращения характеризуется двумя показателями:

– Объемная скорость кровотока (количество крови, протекающей в единицу времени) одинакова в поперечном сечении любого участка ССС. Объемная скорость в аорте равна количеству крови, выбрасываемой сердцем в единицу времени, то есть минутному объему крови.

На объемную скорость кровотока оказывают влияние в первую очередь разность давления в артериальной и венозной системах и сопротивление сосудов. На величину сопротивления сосудов влияет ряд факторов: радиус сосудов, их длина, вязкость крови.

Линейная скорость кровотока – это путь, пройденный в единицу времени каждой частицей крови. Линейная скорость кровотока неодинакова в разных сосудистых областях. Линейная скорость движения крови в венах меньше, чем в артериях.

Это связано с тем, что просвет вен больше просвета артериального русла. Линейная скорость кровотока наибольшая в артериях и наименьшая в капиллярах.

Следовательно, линейная скорость кровотока обратно пропорциональна суммарной площади поперечного сечения сосудов.

Величина кровотока в отдельных органах зависит от кровоснабжения органа и уровня его активности.

флебография

1) Запись венозной пульсации,

2) Контрастная рентгенография вен.

Капилляры – это мельчайшие сосуды, настолько тонкие, что вещества могут свободно проникать через их стенку.

Через кровеносные капилляры осуществляется переход питательных веществ и кислорода из крови в клетки и переход углекислого газа и других продуктов жизнедеятельности из клеток в кровь.

Помимо кровеносных капилляров, в организме человека находятся лимфатические капилляры, которые являются началом лимфатичской системы.

Упрощенно:

Если концентрация какого-то вещества (например, кислорода) в крови капилляра больше, чем в межклеточной жидкости, то это вещество переходит из капилляра в межклеточную жидкость (и далее – в клетку). Если в межклеточной жидкости концентрация какого-то вещества (например, углекислого газа) больше, чем в крови капилляра, это вещество переходит из межклеточной жидкости в капилляр.

Суммарная длина кровеносных капилляров в организме человека равна примерно 100 000 км (такой нитью можно три раза опоясать земной шар по экватору). Общая поверхность кровеносных капилляров в организме равна примерно 1500 га.

Из общего числа кровеносных капилляров в покое функционирует только небольшая часть – порядка 30 %. Остальные капилляры находятся в спавшемся состоянии, и кровь по ним не течет.

Эти «спящие» капилляры открываются, когда необходима повышенная деятельность того или иного органа.

Например, «спящие» капилляры кишечника открываются при пищеварении, «спящие» капилляры высших отделов головного мозга – при умственной работе, «спящие» капилляры скелетных мышц – при сокращении скелетных мышц.

Нормальному течению обмена веществ способствуют процессы микроциркуляции – направленного движения жидких сред организма: крови, лимфы, тканевой и цереброспинальной жидкостей и секретов эндокринных желез. Совокупность структур, обеспечивающих это движение, называется микроциркуляторным руслом.

Основными структурно-функциональными единицами микроциркуляторного русла являются кровеносные и лимфатические капилляры, которые вместе с окружающими их тканями формируют три звена микроциркуляторного русла: капиллярное кровообращение, лимфообращение и Микроциркуляция (греч. mikros малый + лат.

circulatio круговращение) — транспорт биологических жидкостей на уровне тканей организма: движение крови по микрососудам капиллярного типа (капиллярное кровообращение), перемещение интерстициальной жидкости и веществ по межклеточным пространствам и транспорт лимфы по лимфатическим микрососудам. Термин введен американскими исследователями в 1954 г.

с целью интеграции методических подходов и сведений, которые относились преимущественно к капиллярному кровотоку (см. Кровообращение). Развитие этого направления привело к представлениям о М.

как о сложной системе, интегрирующей деятельность трех подсистем (отсеков, или компартментов): гемомикроциркуляторной, лимфоциркуляторной и интерстициальной. Основной задачей системы М. в организме является поддержание динамического равновесия объемных и массовых параметров жидкости и веществ в тканях — обеспечение гомеостаза внутренней среды. Система М.

осуществляет транспорт крови и лимфы по микрососудам, перенос газов, воды, микро- и макромолекул через биологические барьеры (стенки капилляров) и движение веществ во внесосудистом пространстве.тканевый транспорт.

Гуморальная регуляция — один из эволюционно ранних механизмов регуляции процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью гормонов, выделяемых клетками, органами, тканями.

У высокоразвитых животных и человека гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции.

Продукты обмена веществ действуют не только непосредственно на эффекторные органы, но и на окончания чувствительных нервов (хеморецепторы) и нервные центры, вызывая гуморальным или рефлекторным путём те или иные реакции.

Так, если в результате усиленной физической работы в крови увеличивается содержание CO2, то это вызывает возбуждение дыхательного центра, что ведёт к усилению дыхания и выведению из организма излишков CO2. Гуморальная передача нервных импульсов химическими веществами, т. н. медиаторами, осуществляется в центральной и периферической нервной системе. Наряду с гормонами важную роль в гуморальной регуляции играют продукты промежуточного обмена.

Биологическая активность жидких сред организма обусловлена соотношением содержания катехоламинов (адреналина и норадреналина, их предшественников и продуктов распада), ацетилхолина, гистамина, серотонина и других биогенных аминов, некоторых полипептидов и аминокислот, состоянием ферментных систем, присутствием активаторов и ингибиторов, содержанием ионов, микроэлементов и т. д.

Источник: //poisk-ru.ru/s24967t4.html

Сердечно-сосудистая система. Часть 7

Время кругооборота крови

В этой части речь идет движении крови по сосудам: об основных принципах гемодинамики;  о кровяном давлении – как факторе, обеспечивающим движение крови; об объемной и линейной скорости движения крови; об артериальном пульсе; о времени кругооборота крови; об особенностях движения крови по венам.

Основные принципы гемодинамики

Законы гидродинамики – учения о движении жидкостей по трубкам, изученные более 100 лет назад Пуазейлем, в основном применимы к гемодинамике, изучающей особенности движения крови по сосудам.

Скорость, с которой движется жидкость по трубкам, зависит от двух основных факторов: от разности давления жидкости в начале и конце трубки; от сопротивления, которое встречает жидкость на пути своего движения. Разность давлений способствует движению жидкости, и чем она больше, тем интенсивнее это движение. Этим закономерностям подчиняется и движение крови по сосудам.

Разность кровяного давления, определяющая скорость движения крови по сосудам, у человека велика. В аорте давление может быть равным 120-130 мм рт.ст., а в конце большого круга кровообращения, в полых венах, оно всего лишь 2-5 мм рт.ст., во время вдоха даже отрицательно – минус 2-4 мм рт.ст. Эта разница давлений обеспечивает быстрое движение крови по сосудам.

Сопротивление в сосудистой системе, уменьшающее скорость движения крови, зависит от ряда факторов: от длины сосуда и его радиуса (чем больше длина и меньше радиус, тем больше сопротивление), от вязкости крови (она в 5 раз больше вязкости воды) и от трения частиц крови о стенки сосудов и между собой.

Кровяное давление как фактор, обеспечивающий движение крови

Методы определения кровяного давления. У человека и любого животного величина кровяного давления может быть определена прямым путем. Для этого нужно ввести иглу шприца в сосуд и соединить ее с ртутным манометром. При этом величина давления будет выражена в миллиметрах ртутного столба. Прямой способ определения кровяного давления неудобен и не всегда приемлем.

Для определения величины кровяного давления у человека пользуются косвенным методом, предложенным Н.С.Коротковым. С этой целью используют сфигмоманометр Рива-Роччи. У человека обычно определяют величину кровяного давления в плечевой артерии.

Для этого на плечо накладывают манжету и нагнетают в нее воздух до полного сдавливания артерии, показателем чего может быть прекращение пульса. При этом с помощью фонендоскопа прослушивают тоны в сосуде. Тоны отсутствуют при сжатии сосуда и при свободном течении крови по сосудам.

После прекращения пульса из манжеты начинают постепенно выпускать воздух и в какой-то момент в сосуде прослушивается тон. В момент прослушивания первого звука манометр показывает величину максимального, или систолического давления.

В течение некоторого времени продолжают выпускать воздух из манжеты и все время прослушивают сосудистый тон, который постепенно ослабевание и исчезает полностью. В момент исчезновения тона манометр показывает величину минимального, или диастолического, давления.

Максимальное давление в плечевой артерии у взрослого здорового человека в среднем равно 105-120 мм рт.ст. Минимальное давление в плечевой артерии составляет 60-80 мм рт.ст.

Разность между максимальным и минимальным давлением называют пульсовой разностью или пульсовым давлением. Пульсовое давление колеблется от 35 до 50 мм рт.ст. Оно пропорционально количеству крови, выбрасываемому сердцем за одну систолу и в какой-то мере отражает величину систолического объема сердца.

Зависимость кровяного давления от различных гемодинамических условий. Давление крови в сосудах зависит от количества крови, выбрасываемой сердцем в артерии, и того сопротивления, которое встречает кровь, протекая по артериям, артериолам и капиллярам.

В обычных условиях деятельности организма сердце в момент систолы создает в аорте и легочной артерии давление, достаточное для того, чтобы обеспечить движение крови по всему сосудистому руслу. Часть этого давления необходима для придания определенной скорости движению крови, а другая – для преодоления сопротивления.

Значение сопротивления в создании определенной величины давления в сосуде хорошо иллюстрирует опыт с пьезометрами. Уровень жидкости в вертикальных трубках показывает величину давления в данном участке сосуда.

Если горизонтальная трубка имеет в отдельных участках разных диаметр, то наибольшее падение давления отмечается в месте ее сужения.

Давление крови изменяется вследствие колебания просвета сосудов: оно увеличивается вследствие сужения сосудов и уменьшается при их расширении.

На величину кровяного давления влияет изменение минутного объема крови. Так, например, при переливании крови у реципиента увеличивается минутный объем крови и кровяное давление. В то же время при кровопотерях уменьшаются минутный объем и кровяное давление.

Величина кровяного давления снижается при уменьшении венозного притока крови к сердцу. Это может происходить вследствие расширения капилляров: в них задерживается часть крови и уменьшается возврат крови к сердцу.

На величину кровяного давления влияет и вязкость крови: чем она больше, тем больше сопротивление току крови тем больше кровяное давление.

С помощью ртутного манометра на кимографе можно записать кривую кровяного давления, в которой различают три вида волн.

В ней различают волны I, II, и III порядка, которые отражают колебания пульсового давления, ритм дыхательных движений и состояние сосудодвигательного центра.

Изменение кровяного давления в различных участках кровяного русла. Кровяное давление, являясь одним из факторов, обеспечивающих движение крови, уменьшается от артериального конца сосудистой системы к венозному. У взрослого человека максимальное давление в аорте составляет 130-120 мм рт.ст.

В более мелких артериях кровь встречает большее сопротивление и давление здесь значительно падает до 80-60 мм рт.ст. Самое резкое уменьшение давления отмечается в артериолах и капиллярах, в артериолах оно составляет 20-40 мм рт.ст., а в капиллярах – 15-25 мм рт.ст. В венах давление уменьшается до 3-8 мм рт.ст.

, в полых венах давление отрицательное: оно равно -2, -4 мм рт.ст., т.е. оно на 2-4 мм рт.ст. ниже атмосферного. Это связано с изменением давления в грудной полости. Во время вдоха, когда давление в грудной полости значительно уменьшается, снижается и кровяное давление в полых венах.

Из приведенных данных видно, что кровяное давление в разных участках кровяного русла неодинаково. В крупных и средних артериях оно уменьшается незначительно, приблизительно на 10%, а в артериолах и капиллярах – на 85%.

Это говорит о том, что 10% энергии, развиваемой сердцем при сокращении, расходуется на продвижение в крупных и средних артериях, а 85% – на ее продвижение только по артериолам и капиллярам.

Давление крови в малом круге кровообращения значительно меньше, чем в большом. В легочной артерии оно составляет около 20% от давления в артериях большого круга кровообращения.

Артериальное кровяное давление изменяется под влиянием различных факторов. Оно увеличивается при выполнении физической работы и у спортсменов во время спортивных состязаний может достигать 200 мм рт.ст. Кровяное давление изменяется при различных эмоциональных состояниях: страхе, гневе, испуге и др. Оно зависит также от возраста.

Объемная и линейная скорости движения крови

Объемной скоростью движения крови называют количество крови, протекающей в единицу времени через сумму поперечных сечений сосудов данного участка сосудистого русла.

Через аорту, легочные артерии, полые вены или капилляры за одну минуту протекает одинаковый объем крови.

Поэтому к сердцу всегда возвращается такое же количество крови, какое было им выброшено в сосуды во время систолы.

Объемная скорость в различных органах может изменяться, она зависит от работы органа и величины его сосудистой сети. В работающем органе может увеличиваться просвет сосудов и вместе с ним – объемная скорость движения крови.

Линейной скоростью движения крови называют путь, пройденный кровью в единицу времени. Ее величина зависит от просвета сосуда: линейная скорость обратно пропорциональна площади поперечного сечения сосуда. Чем шире суммарный просвет сосудов, тем медленнее движение крови, а чем он уже, тем больше скорость движения крови.

По мере разветвления артерии скорость движения крови в них уменьшается, так как суммарный просвет ветвей сосудов больше, чем просвет исходного ствола. У взрослого человека просвет аорты приблизительно составляет 8 см2, а сумма просветов капилляров в 500-1000 раз больше, она равна 4000-8000 см2.

Следовательно, линейная скорость движения крови в аорте в 500-1000 раз больше, чем в капиллярах, она равна 500 мм/сек, а в капиллярах только 0,5 мм/сек.

По мере того как капилляры переходят в вены, а мелкие вены соединяются в более крупные, просвет сосудов уменьшается, и соответственно, увеличивается скорость движения крови.

Постольку в среднем две артерии соединяются в одну вену, то скорость движения крови в них в два раза меньше.

Две полые вены примерно в два раза шире аорты, и скорость движения крови в них равна половине скорости в аорте.

Линейная скорость движения крови может изменяться в разных участках сосудистого русла. При постоянной объемной скорости суждение сосудов в одном из участков сосудистого русла приводит к повышению линейной скорости, а расширение сосудов – к ее снижению.

Артериальный пульс

Одной из характеристик деятельности сердечно-сосудистой системы является пульс.

Пульсом, или пульсовой волной, называют ритмическое колебания стенки сосуда, вызванные повышением давления в нем в момент систолы и распространяющиеся по стенкам артерий. В распространении пульсовой волны большое значение имеет эластичность сосудов.

Она обеспечивает растяжение аорты при повышении в ней давления. Возникшее при этом колебание стенки аорты распространяется по всем артериях до капилляров, где пульсовая полна гаснет.

Распространение пульсовой полны не связано со скоростью движения крови. Независимость распространения пульсовой волны от скорости движения крови хорошо видна из сравнения скоростей их распространения.

Определено, что от момента систолы и до появления в лучевой артерии пульсу проходит всего 0,1 сек, тогда как расстояние от сердца до места прослушивания пульса 1 м. За это время кровь по артерии продвигается только на 5 см. Пульсовая волна распространяется со значительно большей скоростью, чем движется кровь.

Скорость распространения пульсовой волны в аорте у человека среднего возраста оставляет 5,5-8 м/сек, а в периферических артериях – 6-9,5 м/сек, тогда как скорость движения крови в артериях равна 0,3-0,5 м/сек.

Кривую артериального пульса можно записать с помощью прибора сфигмографа, и называют ее сфигмограммой. В этой кривой различают анакротическое колено (подъем кривой) и катакротическое колено (спуск кривой).

Анакротическое колено соответствует началу фазы изгнания крови, когда происходит расширение стенки аорты выбрасываемой кровью. Катакротическое колено соответствует концу систолы, когда давление в сосуде начинает уменьшаться. Но в момент спуска кривой на ней появляется второй подъем, называемый дикротическим подъемом.

Он связан с тем, что при понижении давления крови в сердце в момент диастолы кровь из аорты направляется в сердце и отталкивается от закрытых полулунных клапанов.

Регистрация пульса имеет большое практическое значение для клиники и физиологии. Пульс дает возможность судить о частоте, силе и ритме сердечных сокращений.

Время кругооборота крови.

Кровь, выброшенная из левого желудочка в аорту, возвращается в правое предсердие, совершив полный кругооборот. Возврату крови в сердце способствует ряд факторов. Важнейшим из них является разность давления крови между аортой и полыми венами. Этому же способствует остаток движущей силы, которая сообщается крови сокращением сердца.

Кругообороту крови способствует также присасывающая деятельность грудной клетки и самого сердца.

Скорость кругооборота крови определяется путем введения радиоактивных изотопов или безвредной краски и наблюдения их передвижения. Если ввести меченые атомы в бедренную вену правой ноги, то время, через которое данное вещество появится в бедренной вене левой ноги, будет временем кругооборота крови.

Время кругооборота крови у человека в состоянии покоя равно 20-25 сек. Это составляет приблизительно 27 систол. Около половины этого времени расходуется на продвижение крови по малому кругу, несмотря на то что малый круг значительно короче.

Это связано с тем, что кровь по широким сосудам протекает быстро, так как их суммарный просвет небольшой, а основное время затрачивается на продвижение крови по артериолам и капиллярам.

Их особенно много в большом круге кровообращения, и их суммарный просвет велик.

Время кругооборота крови уменьшается при физической нагрузке и может составлять 10 сек. Оно изменяется с возрастом.

Особенности движения крови по венам.

От движения крови по венам зависят возврат крови к сердцу и его наполнение кровью. Вены – сосуды тонкостенные, их мышечный слой невелик. Они обладают меньшей эластичностью по сравнению с артериями и поэтому легко растягиваются притекающей к ним кровью, вследствие чего кровь в них может застаиваться.

На движение крови в венах влияет разность давления крови между аортой и полыми венами, а также разность давления между мелкими и крупными венами. По мере продвижения крови к сердцу давление в венах уменьшается, а это облегчает движение крови.

Сила сердечного толчка, сообщающего скорость движению крови, в венах значительно снижена и значение этого фактора минимально. Здесь важен ряд других дополнительных факторов. Так, в основных магистральных венах имеются клапаны, которые являются кармановидными выростами их эндотелия и расположены так, что пропускают кровь только к сердцу.

Поэтому любое сдавливание вен приводит к продвижению крови к сердцу. В связи с этим важное значение имеют чередующиеся сокращения и расслабления мышц при движении.

При сокращении мышц вены сдавливаются и кровь проталкивается к сердцу, а при их расслаблении вены расширяются, давление в них несколько уменьшается и кровь устремляется в них из артерий (работает “мышечный насос”).

Важным фактором движения крови по венам является присасывающая деятельность грудной клетки и сердца.

Источник: //www.psyworld.ru/for-students/lectures/anatomy-and-physiology-of-a-childrens-organism/812-2009-10-30-10-21-18.html

Время полного кругооборота крови

Время кругооборота крови

Время полного кругооборота крови – это время, необходимое для того, чтобы она прошла через большой и малый круг кровообращения.

Время полного кругооборота крови у человека составляет в сред­нем 27 систол сердца. При частоте сердечных сокращений 70–80 в минуту кругооборот крови происходит приблизительно за 20–23 с, однако скорость движения крови по оси сосуда больше, чем у его стенок. Поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным.

Экспериментальными исследованиями было показано, что 1/5 времени полного кругооборота крови приходится на прохождение крови по малому кругу кровообращения и 4/5 по большому.

Тема 1.2. Кровяное давление, факторы его обеспечивающие. Виды кровяного давления и их клиническое значение. Физиологические основы измерения кровяного давления

Кровяное давление – это давление, производимое кровью на стенки кровеносных сосудов и полости сердца при условии ее движения. . Центральным органом всей кровеносной системы является сердце. Ero работа создает 1 -ый фактор движения крови по артериальным сосудам. Благодаря его насосной деятельности создается давление крови, которое способствует ее продвижению по сосудам:

2 –ой фактор движения крови по артериальным сосудам – разность давлений, имеющаяся в начале и в конце сосудистой системы, которая обеспечивает продвижение крови по артериальным сосудам и способствует непрерывному кровотоку.

Изменению уровня КД вдоль сосудистой системы способствует трение крови о стенки кровеносных сосудов – периферическое сопротивление R, которое препятствует движению крови.

Таким образом артериальное давление P зависит от количества крови, нагнетаемое сердцем в артериальную систему в единицу времени Q, и сопротивления, которое кровоток встречает в сосудах R. Эти факторы взаимосвязаны и могут быть выражены уравнением: P = Q·× R. Формула, вытекающая из основного уравнения гидродинамики: Q=Pl-P2/ R.

Существует несколько основных факторов, обеспечивающих величину кровяного давления.

I фактор – работа сердца. Сердечная деятельность обеспечивает количество крови, поступающее в течение минуты в сосудистую систему, т.е. минутный объем кровообращения. Он составляет у человека 4–6 л. Величина минутного объема кровотока может меняться как в сторону увеличения при переливании больших количеств крови так и в сторону уменьшения при кровопотере.

C другой стороны, при выполнении большой физической нагрузки минутный объем кровообращения достигает 30–40 л вследствие опорожнения кровяных депо и сосудов лимфатической системы, что увеличивает массу циркулирующей крови, ударный объем сердца и частоту сердечных сокращений. B результате этого минутный объем кровообращения возрастает в 8–10 раз при этом наблюдается незначительное повышение АД у здорового человека всего на 20–40 мм рт. ст.

Отсутствие выраженного повышения артериального давления при значительном росте минутного объема объясняется снижением периферического сопротивления кровеносных сосудов и деятельностью депо крови.

II фактор – вязкость крови. Согласно основным законам гидродинамики сопротивление току жидкости тем больше, чем больше ее вязкость. Вязкость крови это показатель отражающий внутреннее сопротивление между текущими ламинарно друг относительно друга слоями жидкости.

Кровь является гетерогенной (неньютоновской) жидкостью. Ее вязкость варьирует в большей степени от количества клеток и в меньшей степени от содержания белков в плазме и от размеров радиуса и длины сосудов по которым она протекает.

У человека вязкость крови составляет 3–5, а плазмы 1,9–2,3 относительных единиц.

В обычных физиологических условиях ОПС может составлять от 1 200 до 1 600 дин. с. см-5. При гипертонической болезни эта величина может возрастать в два раза против нормы и составлять от 2 200 до 3 000 дин. с. см-5.

Поскольку сопротивление в сосудах разных органов различно, каждый орган получает разную долю от общего сердечного выброса.

Приспособительные изменения кровоснабжения органов в соответствии с их потребностями осуществляются как путем изменения сердечного выброса, так и посредством изменения сопротивления различных сосудистых сетей, параллельных друг другу.

Сгущение крови увеличивает внешнее и внутреннее трение, повышает сопротивление кровотоку и приводит к подъему кровяного давления.

III фактор – периферическое сопротивление сосудов. Так как вязкость крови не подвержена быстрым изменениям, то основное значение в регуляции кровообращения принадлежит показателю периферического сопротивления, обусловленному трением крови о стенки сосудов.

Трение крови будет тем больше, чем больше общая площадь соприкосновения ее со стенками сосудов. Наибольшая площадь соприкосновения между кровью и сосудами приходится на тонкие кровеносные сосуды (артериолы и капилляры).

Наибольшим периферическим сопротивлением обладают артериолы, что связано с наличием в них гладкомышечных жомов, поэтому артериальное давление при переходе крови из артерий в артериолы падает с 120 до 70 мм рт. ст. B капиллярах давление снижается до 30–40 мм рт. ст.

, что объясняется значительным увеличением их суммарного просвета. По ходу сосудистого русла кровяное давление существенно изменяется (рис. 3).

Рис. 3.Кривая изменения артериального давления

по ходу сосудистого русла:

1 – аорта; 2 – крупные артерии; 3 – мелкие артерии;

4 – артериолы; 5 – капилляры;

Из рисунка видно, что первое значительное падение кровяного давления отмечается на участке артериол, потому что именно этот тип сосудов является наиболее активным в вазомоторном отношении и оказывает наибольшее сопротивление току крови.

Наиболее существенные изменения периферического сопротивления сосудистого русла обуславливаются изменениями просвета артериол и скоростью течения крови по сосудам. Значительное повышение тонуса артериол повышает кровяное давление следствием чего является гипертония. Повышение давления в отдельных участках сосудистой системы приводит к гипертензии.

Чем больше скорость, тем больше сопротивление. При повышении сопротивления сохранение минутного объема кровообращения возможно лишь при условии повышения линейной скорости течения крови в них. Это же дополнительно увеличивает сопротивление кровеносных сосудов.

При понижении сосудистого тонуса линейная скорость кровотока уменьшается, трение струи крови о стенки сосудов становиться меньше. Снижается периферическое сопротивление сосудистой системы, и поддержание минутного объема кровообращения обеспечивается при более низком АД.

//www.youtube.com/watch?v=SZBEedAXQt4

Для поддержания АД в организме действует целый комплекс сложных нейрогуморальных регуляторных механизмов.

Таким образом, артериальное давление зависит от многих факторов, которые могут быть сгруппированы следующим образом:

1. Факторы, связанные с работой самого сердца (сила и частота сердеч­ных сокращений), что обеспечивает приток крови в артериальную систему.

2. Факторы, связанные с состоянием сосудистой системы – тонус стенки сосуда, состояние поверхности сосудистой стенки, ее эластичность.

3. Факторы, связанные с состоянием крови, циркулирующей по сосудистой системе – ее вязкость, количество.

Кровяное давление в артериях совершает постоянные непрерывные колебания от некоторого среднего уровня. При прямой регистрации артериального давления на кимограмме различают три рода волн: 1 – систоли­че­ские волны I порядка; 2 – дыхательные волны II порядка; 3 – сосудистые волны III порядка.

Волны I порядка – обусловлены систолой желудочков сердца. Количество волн 1 порядка соответствует ЧСС.

Волны II порядка – дыхательные. Отражают изменение артериального давления, связанное с дыхательными движениями.

Волны IlI порядка: (волны Геринга–Траубе) – это ещё более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн второго порядка. Они обусловлены периодическим изменением тонуса сосудодвигательного центра. Наблюдается чаще всего при недостаточном снабжении мозга кислородом (высотная гипоксия), после кровопотери или отравлении некоторыми ядами.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/17_78536_vremya-polnogo-krugooborota-krovi.html

Ваш Недуг
Добавить комментарий