Тиндаля феномен

Оптические свойства коллоидов. Эффект Тиндаля. Опалесценция, рассеяние света

Тиндаля феномен

ЭЛЕКТРОКИНЕТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДОВ

Электрокинетические явления подразделяют на две группы: прямые и обратные.

К прямым относят те электрокинетические явления, которые возникают под действием внешнего электрического поля (электрофорез и электроосмос).

Обратными называют электрокинетические явления, в которых при механическом перемещении одной фазы относительно другой возникает электрический потенциал (потенциал протекания и потенциал седиментации).

Электрофорез и электроосмос были открыты Ф. Рейссом (1808). Он обнаружил, что если во влажную глину погрузить две стеклянные трубки, заполнить их водой и поместить в них электроды, то при пропускании постоянного тока происходит движение частичек глины к одному из электродов.

Это явление перемещения частиц дисперсной фазы в постоянном электрическом поле было названо электрофорезом.

В другом опыте средняя часть U-образной трубки, содержащей воду, была заполнена толченым кварцем, в каждое колено трубки помещен электрод и пропущен постоянный ток. Через некоторое время в колене, где находился отрицательный электрод, наблюдалось поднятие уровня воды, в другом – опускание. После выключения электрического тока уровни воды в коленах трубки уравнивались.

Это явление перемещения дисперсионной среды относительно неподвижной дисперсной фазы в постоянном электрическом поле названо электроосмосом.

Позже Квинке (1859) обнаружил явление, обратное электроосмосу, названное потенциалом протекания. Оно состоит в том, что при течении жидкости под давлением через пористую диафрагму возникает разность потенциалов. В качестве материала диафрагм были испытаны глина, песок, дерево, графит.

Явление, обратное электрофорезу, и названное потенциалом седиментации, было открыто Дорном (1878). При оседании частиц суспензии кварца под действием силы тяжести возникала разность потенциалов между уровнями разной высоты в сосуде.

Все электрокинетические явления основаны на наличии двойного электрического слоя на границе твердой и жидкой фаз.

//junk.wen.ru/o_6de5f3db9bd506fc.html

18. Особые оптические свойства коллоидных растворов обусловлены их главными особенностями: дисперсностью и гетерогенностью. На оптические свойства дисперсных систем в значительной степени влияют размер и форма частиц. Прохождение света через коллоидный раствор сопровождается такими явлениями, как поглощение, отражение, преломление и рассеяние света.

Преобладание какого-либо из этих явлений определяется соотношением между размером частиц дисперсной фазы и длиной волны падающего света. В грубодисперсных системах в основном наблюдается отражение света от поверхности частиц. В коллоидных растворах размеры частиц сравнимы с длиной волны видимого света, что предопределяет рассеяние света за счёт дифракции световых волн.

Светорассеяние в коллоидных растворах проявляется в виде опалесценции – матового свечения (обычно голубоватых оттенков), которое хорошо заметно на тёмном фоне при боковом освещении золя.

Причиной опалесценции является рассеяние света на коллоидных частицах за счёт дифракции.

С опалесценцией связано характерное для коллоидных систем явление – эффект Тиндаля: при пропускании пучка света через коллоидный раствор с направлений, перпендикулярных лучу, наблюдается образование в растворе светящегося конуса.

Эффект Тиндаля, рассеяние Тиндаля — оптический эффект, рассеивание света при прохождении светового пучка через оптически неоднородную среду. Обычно наблюдается в виде светящегося конуса (конус Тиндаля), видимого на тёмном фоне.

Характерен для растворов коллоидных систем (например, золей металлов, разбавленных латексов, табачного дыма), в которых частицы и окружающая их среда различаются по показателю преломления. На эффекте Тиндаля основан ряд оптических методов определения размеров, формы и концентрации коллоидных частиц и макромолекул.

19. Золи -это малорастворимые вещества (соли кальция, магния, холестерина идр) существующие в виде лиофобных коллоидных растворов.

Нью́тоновская жидкость — вязкая жидкость, подчиняющаяся в своём течении закону вязкого трения Ньютона, то есть касательное напряжение и градиент скорости в такой жидкости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость.

Ньютоновская жидкость продолжает течь, даже если внешние силы очень малы, лишь бы они не были строго нулевыми. Для ньютоновской жидкости вязкость, по определению, зависит только от температуры и давления (а также от химического состава, если жидкость не является беспримесной), и не зависит от сил, действующих на неё. Типичная ньютоновская жидкость — вода.

Неньюто́новской жидкостью называют жидкость, при течении которой её вязкость зависит от градиента скорости. Обычно такие жидкости сильно неоднородны и состоят из крупных молекул, образующих сложные пространственные структуры.

Простейшим наглядным бытовым примером может являться смесь крахмала с небольшим количеством воды. Чем быстрее происходит внешнее воздействие на взвешенные в жидкости макромолекулы связующего вещества, тем выше её вязкость.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/11_205317_opticheskie-svoystva-kolloidov-effekt-tindalya-opalestsentsiya-rasseyanie-sveta.html

III Международный конкурс научно-исследовательских и творческих работ учащихся Старт в науке

Тиндаля феномен
Мазаева А.В. 1Казначеева И.В. 1 Текст работы размещён без изображений и формул.

Полная версия работы доступна во вкладке “Файлы работы” в формате PDF Введение

Каждый из нас в своей повседневной жизни не раз сталкивался и сталкивается с обыденными с одной стороны, но вместе тем удивительными с другой стороны явлениями, совершенно не задумываясь при этом, с какими замечательными физическими явлениями имеет дело.

В будущем я хотела бы связать свою жизнь с такой наукой как физика, поэтому уже сейчас интересуюсь любыми вопросами по данному предмету и выбрала в качестве темы своего исследования один из оптических эффектов.

На сегодняшний день существуют работы, посвященные оптическим эффектам, в частности, эффекту Тиндаля. Однако я решила изучить эту тему путем проведения эксперимента на собственном опыте.

Почему при пропускании через мутное стекло, задымленный воздух или раствор крахмала света разной спектральной окраски мы наблюдаем разный результат? Почему густой туман или кучевые облака кажутся нам белыми, а дымка от лесных пожаров – голубовато-фиолетовой. Попробуем дать объяснение этим явлениям.

Цель проекта:

  • обнаружить коллоиды с помощью эффекта Тиндаля;

  • исследовать влияния факторов, определяющих прохождение светового пучка через коллоидный раствор.

Задачи исследования:

  • исследование влияния длины волны на реализацию эффекта Тиндаля;

  • исследование влияния размера частиц на реализацию эффекта Тиндаля;

  • исследование влияния концентрации частиц на реализацию эффекта Тиндаля;

  • поиск дополнительной информации по вопросу об эффекте Тиндаля;

  • обобщение полученных знаний.

Эффект Тиндаля

Преломление света, отражение, дисперсия, интерференция, дифракция и многое другое :оптические эффекты окружают нас повсюду. Один из них — эффект Тиндаля, открытый английским физиком Джоном Тиндалем.

Джон Тиндаль — геодезист, сотрудник Фарадея, директор Королевского института в Лондоне, гляциолог и оптик, акустик и специалист по магнетизму. Его фамилия дала название кратеру на Луне, леднику в Чили и интересному оптическому эффекту.

Эффект Тиндаля – это свечение оптически неоднородной среды вследствие рассеяния проходящего через нее света. Данное явление обусловлено дифракцией света на отдельных частицах или элементах неоднородности среды, размер которых намного меньше длины волны рассеиваемого света.

Что же такое неоднородная среда? Неоднородная среда – среда, характеризующаяся непостоянством показателя преломления. Т.е. n≠const.

Какую характерную особенность данного эффекта можно выделить? Эффект Тиндаля характерен для коллоидных систем (систем, в которых одно вещество в виде частиц различной величины распределено в другом. Например, гидрозолей, табачного дыма, тумана, геля и т.д.) с низкой концентрацией частиц, имеющих показатель преломления, отличный от показателя преломления среды.

Обычно наблюдается в виде светлого конуса на темном фоне (конус Тиндаля) при пропускании фокусированного светового пучка сбоку через стеклянный сосуд с плоскопараллельными стенками, заполненный коллоидным раствором.

(Коллоидные растворы — это высокодисперсные двухфазные системы, состоящие из дисперсионной среды и дисперсной фазы, причем линейные размеры частиц последней лежат в пределах от 1 до 100 нм).

Эффект Тиндаля по существу то же, что опалесценция (резкое усиление рассеяния света). Но традиционно первый термин относят к интенсивному рассеянию света в ограниченном пространстве по ходу луча, а второй – к слабому рассеянию света всем объемом наблюдаемого объекта.

Экспериментальная работа

Используя простую методику, мы увидим, как с помощью эффекта Тиндаля можно обнаружить коллоидные системы в жидкостях.

2 стеклянных контейнера с крышками, источник направленного света (например, лазерная указка), поваренная соль, раствор ПАВ (например, жидкое моющее средство), 1 куриное яйцо, разбавленный раствор соляной кислоты.

Проведение эксперимента:

  1. Наливаем воду в стеклянный контейнер, полностью растворяем в нем немного поваренной соли.

  2. Освещаем сбоку стакан с полученным раствором узким лучом света (луч лазерной указки). Поскольку соль полностью растворилась, никакого заметного эффекта не наблюдается.

Рис.1, а

Рис.1, а

Рис.1, б

Рисунок 1. а. Раствор соли без ПВА (рассеивания света не происходит).

б. Обнаружение коллоидов в соляном растворе с примесью ПВА

Эксперимент с биологическим материалом:

  1. Растворяем куриный белок примерно в 300мл 1% раствора соли.

  2. Освещаем полученный раствор узким лучом света. Если посмотреть на стакан сбоку, на пути луча видна яркая светящаяся полоса – появление эффекта Тиндаля.

  3. Затем добавляем в раствор белка разбавленный раствор соляной кислоты. Белок свернется (денатурирует) с образованием белесоватого осадка. В верхней части стакана луч света снова не будет виден.

Рисунок 2. Эксперимент

с биологическим материалом

Результаты эксперимента: Если направить луч света сбоку на стеклянный стакан с раствором соли, луч будет невидим в растворе. Если луч света пропустить через стакан с коллоидным раствором (раствор ПАВ), он будет виден, потому что происходит рассеяние света на коллоидных частицах.

Рисунок 3. Результаты эксперимента

Влияние длины волны, размера частиц и концентрации на реализацию эффекта Тиндаля

Длина волны. Поскольку самую короткую длину из видимого спектра имеют волны цветов синей гаммы, именно эти волны отражаются от частиц при эффекте Тиндаля, а более длинные красные рассеиваются хуже.

Размер частиц. Если увеличивается размер частиц, то они могут влиять на рассеяние света любой длины волны, и «расщепленная» радуга складывается обратно, получая полностью белый свет.

Концентрация частиц. Интенсивность рассеянного света прямо пропорциональна концентрации частиц в коллоидном растворе.

Рисунок 4. Пропускание светового пучка красного спектра через емкость с водой

Таким образом, можно сделать следующие выводы:

  • в истинных растворах эффект Тиндаля не проявляется, в отличие от коллоидных;

  • наблюдая эффект Тиндаля, можно обнаруживать наличие коллоидных частиц и тем самым распознать истинные и коллоидные растворы.

Рисунок 5 . Пропускание светового пучка через емкость с истинным и коллоидным растворами.

Применение эффекта Тиндаля

Основанные на Тиндаля эффекте методы обнаружения, определения размера и концентрации коллоидных частиц широко применяются в научных исследованиях и промышленной практике ( например, в ультрамикроскопах).

Ультрамикроскоп – оптический прибор для обнаружения мельчайших (коллоидных) частиц, размеры которых меньше предела разрешения обычных световых микроскопов. Возможность обнаружения таких частиц с помощью ультрамикроскопа обусловлена дифракцией света на них эффектом Тиндаля.

При сильном боковом освещении каждая частица в ультрамикроскопе отмечается наблюдателем как яркая точка (светящееся дифракционное пятно) на темном фоне.

Вследствие дифракции на мельчайших частицах очень мало света, поэтому в ультрамикроскопе применяют, как правило, сильные источники света.

В зависимости от интенсивности освещения, длины световой волны, разности показателей преломления частицы и среды можно обнаружить частицы размерами от 20-50 нм и до 1-5 мкм. По дифракционным пятнам нельзя определить истинные размеры, форму и структуру частиц.

Ультрамикроскоп не дает оптических изображений исследуемых объектов.

Однако, используя ультрамикроскоп можно установить наличие и численную концентрацию частиц, изучить их движение, а также рассчитать средний размер частиц, если известны их весовая концентрация и плотность.

Ультрамикроскопы применяют при исследовании дисперсных систем, для контроля чистоты атмосферного воздуха. Воды, степени загрязнения оптически прозрачных сред посторонними включениями.

Заключение

В процессе своего исследования я многое узнала об оптических эффектах, в частности, об эффекте Тиндаля. Данная работа помогла мне по-новому взглянуть как на некоторые разделы физики, так и на наш удивительный мир в целом.

Кроме аспектов, рассмотренных в данной работе, по моему мнению, было бы интересно изучить возможности более широкого практического применения эффекта Тиндаля.

Что же касается назначения исследования, то оно может быть полезно и интересно учащимся школ, которые увлекаются оптикой, а также всем, кто интересуется физикой и различного рода экспериментами.

Список литературы

  1. Гавронская Ю.Ю. Коллоидная химия : Учебник. СПб.: Изд-во РГПУ им. А. И. Герцена, 2007. – 267 с.

  2. Новый политехнический словарь.- М.: Большая Российская энциклопедия, 2000.- .20 с. , 231 с. , 460 с.

  3. Руководство по выполнению экспериментов к «NanoSchoolBox». NanoBioNet e.V/ Scince Park Перевод ИНТ.

  4. //indicator.ru/article/2016/12/04/istoriya-nauki-chelovek-rasseyanie.

  5. //kf.info.urfu.ru/fileadmin/user_upload/site_62_6389/pdf/FiHNS_proceedings.pdf

  6. //www.ngpedia.ru/id623274p1.html

Приложения

Рисунок 1. Обнаружение коллоидов в соляном растворе

Рисунок 2. Эксперимент с биологическим материалом

Рисунок 3. Результаты эксперимента

Рисунок 4. Пропускание светового пучка красного спектра через емкость с водой

Рисунок 5 . Пропускание светового пучка через емкость с истинным и коллоидным растворами.

12

Источник: //school-science.ru/3/11/32428

Ваш Недуг
Добавить комментарий