Системогенез

Системогенез Петра Анохина

Системогенез

08.10.2014 00:01:00

Человек, который понял важность синтетического подхода к исследованиям мозга

Петра Анохина можно ставить в один ряд с выдающимися отечественными естествоиспытателями-универсалами. Фото РИА Новости

Ученый говорит на языке своего времени. В 1930-х было популярно рассматривать нейрон как радиопередатчик, действующий, однако, на частоте, недоступной для существующих пеленгаторов.

Радиосхема как интегральная структура привлекала многие умы в качестве универсальной модели почти всего – от общества до организма.

Наконец, радиосхемы вошли в биологический эксперимент – с середины 1920-х Гербер Спенсер Гассер и Джозеф Эрлангер применяли катодную трубку для измерения электрических сигналов в нервных волокнах.

Обратная афферентация

А в 30-е годы возникла теория функциональных систем Петра Кузьмича Анохина. Возникла в русле прочих концепций единого – от ноосферы Владимира Вернадского до пневматосферы Флоренского и «живого космоса» Эдуарда Циолковского. Но в отличие от «технарей» Флоренского и Циолковского Анохин был медиком и к системным обобщениям пришел из лабораторной практики.

Окончив в Петрограде Институт медицинских знаний, Анохин работает у Владимира Михайловича Бехтерева, а потом переходит лаборантом в Военно-медицинскую академию к Ивану Петровичу Павлову, где становится заодно и хорошим хирургом. В 1932 году с подачи Павлова он назначается заведующим кафедрой на медицинском факультете университета в Нижнем Новгороде. Здесь он продолжает опыты с лабораторными животными, прежде всего, как и его учитель, с собаками.

Оперируя в Нижнем, Анохин заметил, что при сшивании центральных и периферических концов различных по своим функциям нервов, сбои в поведении животных обнаруживались лишь в первое время после операции; в дальнейшем функции восстанавливались по мере «переучивания» соответствующего нервного центра. Анохин предполагает, что нервная система осуществляет свою интегративную деятельность не только по структурному (анатомическому), но и по функциональному принципу. Причем элементы функциональной системы по Анохину совершенно не обязаны соседствовать в организме.

Тогда же он формулирует понятие «обратной афферентации» (нам сейчас ближе словосочетание «обратная связь», введенное Норбертом Винером для кибернетических систем примерно в то же время). Обратная афферентация по Анохину – это информация о результатах действия, совершенного периферийным органом по команде «центра», поступающая в этот самый «центр» как «отчет».

Любопытен синхронизм нейрофизиологической теории Анохина и кибернетических построений Винера. У Винера был заложен алгоритм программирования, определена структура компьютера и функции его блоков. Анохин тоже описывал своего рода биокомпьютер, только в виде модели живого организма.

Интересно также, что незадолго до то того, как Анохин перебрался в Нижний, здесь в 1928 году побывал Павел Александрович Флоренский. Он был увлечен тогда аналоговыми вычислителями, действующими на основе параллелей между решениями систем уравнений и физическими процессами, протекающими в механической, гидравлической или электрической цепи.

Я помню университетскую лабораторную работу на подобной аналоговой вычислительной системе с кучей заполненных водой резиновых трубочек, которые ты пережимаешь бельевыми прищепками, добавляя и убавляя таким образом слагаемые в уравнения. Так что аналоговые вычислители дожили до 1980-х – правда, уже как учебные.

Но в 1930-х было их звездное время, и в Московском политехническом музее целый зал посвящен удивительным агрегатам из повторяющихся цепочек сопротивлений и емкостей, загадочных проволочек или трубочек.

Кстати, трубочками (своеобразным цитоскелетом) внутри нервов активно занимался Анохин.

Не исключено, что он обратил внимание и на аналогии Флоренского (работы которого публиковались в те же 1930-е), – кругозор Анохина, по воспоминаниям его учеников, был фантастически широк.

Предвкушение и проектирование среды

Сформулировав концепцию функциональных систем, основанную на «обратной афференции», Анохин усилил парадигму великого физиолога Алексея Александровича Ухтомского, утверждавшего, что мозг является органом «предвкушения и проектирования среды». Эта парадигма противостояла теориям эпигонов Павлова, стоящих на традиционной позиции «рефлексов».

Идея Анохина появилась закономерно – в это же время было предпринято еще несколько попыток по созданию синтетической теории деятельности мозга.

Как писал сам Анохин, «в области физиологии нервной деятельности за последние годы выдвинут был также ряд точек зрения, которые направлены в сторону пересмотра господствующей до настоящего времени рефлекторной теории и замены ее более комплексными представлениями».

И далее: «В этой новой постановке проблемы воспринимающие периферические аппараты и рабочие ответные органы составляют вместе с центральной нервной системой динамическое единство, в котором только для отдельных случаев можно с определенностью говорить о доминировании того или другого».

Несмотря на очень общую формулировку, главное достижение Анохина именно в этом: в утверждении существования сложной динамики взаимодействия, когда и периферийные зоны, и «центры» способны подстраиваться, перестраиваться, замещать изначально не свойственные им функции, словом, проявлять сложную динамику.

«Вводя в систему нервной деятельности постоянную регулирующую и интегрирующую роль периферических аппаратов, эта новая точка зрения в значительной степени порывает с традиционным признанием прерогативы центральной нервной системы в деле регуляции нервной деятельности» – из работы 1935 года «Проблема центра и периферии в физиологии нервной деятельности».

В юности Петр Анохин, выходец из беднейшего городского сословия (его отец, путейский рабочий в Царицине, был неграмотен, но смог дать образование сыну), окунулся в гущу Гражданской войны, работал в большевистской газете, после случайной встречи с Луначарским получил рекомендацию на учебу в Петрограде. Уже позже в одном из текстов он утверждал, что интерес к проблеме изучения мозга был во многом связан «с участием в Гражданской войне и массой впечатлений, касающихся жизни, смерти, психической деятельности».

Может, это и слишком смелое допущение, но кажется, что неоднозначность взаимовлияний периферий и центров будущий физиолог почувствовал всеми своими нервными окончаниями как раз изнутри Гражданской войны с ее феноменальной пластичностью, переменчивостью и значительной автономностью всевозможных политических движений, социальных групп и военных структур.

В 1930-х было популярно рассматривать нейрон как радиопередатчик, действующий, однако, на частоте, недоступной для существующих пеленгаторов. Иллюстрация с сайта www.neuron-maxon.net

Результат многообразия соединений

Но вернемся от социального организма к организму как таковому. В книге 1935 года Анохин формулирует свое кредо: «Все многообразие деятельности центральной нервной системы есть результат многообразия соединений, взаимоисключений… отдельных нервных центров и их связей, без потери ими своей специфичности…»

Анохин цитирует Карла Спенсера Лешли, который писал о неспецифичных функциях специфичных нервных центров.

Так, зрительный центр помимо зрительных задач выполняет и другие, которые становятся заметны лишь в специальных экспериментах.

Например, навык, приобретенный уже давно ослепленной крысой, все-таки исчезает после удаления зрительного центра, хотя, казалось бы, зрение уже и так не востребовано.

Подобные наблюдения Лешли и других усиливали концепцию Анохина, который утверждает сложную, сейчас бы сказали «сетевую», динамику комплекса периферия–центр.

В утверждении сетевого характера деятельности мозга и была новизна подхода Петра Кузьмича Анохина.

Со свойственной ему полемичностью и напором он пишет: «Вместо того чтобы немедленно взяться за исправление фундамента, давшего катастрофическую трещину, нейрофизиологи продолжают бесконечно украшать верхние этажи этого несовершенного здания».

В многочисленных опытах на аксолотлях и морских свинках – вначале в Нижнем Новгороде, а потом и в Москве – лабораторией Анохина была показана высокая степень пластичности нервной системы, возможность компенсации функций, даже несмотря на значительные изменения головного мозга в результате операций.

Тогдашняя сотрудница Анохина Екатерина Голубева писала, что «было начато подробное изучение головного мозга оперированных в эмбриональном состоянии и доживших до взрослого организма животных». К сожалению, эти опыты были прерваны финской войной, хотя сейчас очевидно, что группа Анохина действовала на очень перспективном направлении.

Анохин и его помощники много и нестандартно оперировали. В свое время советские газеты облетела фотография собаки с двумя головами, порожденной волей, фантазией и мастерством поволжского доктора Моро. Но монстры не только населяли виварий Анохина, монстры, увы, были и вне стен его лаборатории.

Зоны активности

На совместном заседании президиумов Академии наук СССР и Академии медицинских наук СССР в 1950 году (кальке с печально известной сессии ВАСХНИЛ 1948 года) Анохин подвергся обструкции.

Один из ретивых докладчиков заявил: «…когда ученик Павлова Анохин под маской верности своему учителю систематически и неотступно стремится ревизовать его учение с гнилых позиций лженаучных идеалистических «теорий» реакционных буржуазных ученых, то это по меньшей мере возмутительно».

Анохин был отстранен от работы в институте физиологии в Москве и отправлен в провинцию, в Рязань. Долгие годы ушли на возращение позиций – научных и карьерных. Но времена все-таки менялись. На философском семинаре нейрофизиологов в 1962 году Анохин убедительно отстоял свою теорию, вернулся в Москву, получил кафедру.

По воспоминаниям одного из учеников Анохина, Геннадия Крюкова, в начале 1960-х на «территории» кафедры в Москве была организована лаборатория бионики. Одна из ее задач – разработка самых мощных для своего времени вычислительных систем с использованием принципов и механизмов организации мозговой деятельности в рамках теории функциональных систем.

Таким образом, уже тогда начали разрабатываться модели принципиально новых электронных устройств, которые сейчас принято называть нейрокомпьютерами.

Интересно, что работы с нейрокомпьютерными интерфейсами с успехом продолжились в Нижнем Новгороде уже в 2010-х годах – в Нижегородском нейроцентре, объединившем исследователей из Государственного университета, Медицинской академии и академического Института прикладной физики.

А в конце 1960-х Анохин дополнил теорию функциональных систем принципом системогенеза. Он писал: «Одной из основных закономерностей жизни организма является непрерывное развитие, поэтапное включение и смена его функциональных систем, обеспечивающее ему адекватное приспособление на различных этапах постнатальной жизни».

Здесь уже была предпринята попытка соединить нейрофизиологию с генетикой (Анохин активно общался с генетиком Николаем Петровичем Дубининым) и даже скорее эпигенетикой. Сейчас мы знаем механизмы «пробуждения» тех или иных прежде «спящих» участков генома с помощью, например, метилирования ДНК. Тогда это было неизвестно, но интуиция направляла Анохина и его коллег в правильном направлении.

Тогда же Анохин увлекся кибернетикой и подружился с Акселем Ивановичем Бергом, одним из видных радиоэлектронщиков страны. Берг активно продвигал радиолокацию во время войны, а после, уже в начале 1960-х, координировал исследования в области кибернетики и искусственного интеллекта.

Анохин интуитивно чувствовал перспективные зоны активности в науке и во многом предвидел появление синергетики и теорий самоорганизации в живой природе.

Его ментальное зрение, как у двуликого Януса, было направлено сразу и в прошлое, и в будущее.

Из обращения в прошлое – к концепции гетерохронии (неравномерного развития органов и систем в организме), которую использовал еще Бехтерев (опираясь на своего немецкого учителя Пауля Флегсига), Анохин вывел свой системогенез.

А заглядывая через головы первых кибернетиков и синергетиков, он понял важность синтетического подхода к исследованиям мозга. Того подхода, что не только включает новейшие методики электрофизиологии или микроскопии, но и опирается на смелые обобщения нейронаук с учетом генетики, информатики и эволюционной теории.

Именно поэтому Анохина можно ставить в один ряд с выдающимися отечественными естествоиспытателями-универсалами – Вернадским, Флоренским, Бехтеревым, Ухтомским.

И именно поэтому имя Петра Кузьмича так часто упоминается современными исследователями, которые могут повторить вслед за 20-летним Анохиным, что ощущают «недостатки положительных знаний в естествознании, особенно в проблеме изучения мозга».

Нижний Новгород

Источник: //www.ng.ru/science/2014-10-08/13_anohin.html

Глава 3 Теория функциональных систем и системогенеза (3.2.)

Системогенез

3.2. Принципы системогенеза

П. К. Анохин ставит вопрос о том, с помощью каких механизмов и про­цессов многочисленные и различные по сложности компоненты фун­кциональной системы, часто расположенные в организме далеко друг от друга, могут успешно объединяться (Анохин П. К., 1968).

Связывание отдельных звеньев в функциональные системы начина­ется задолго до полного их созревания.

Гармоничное соотношение меж­ду многочисленными и различными по степени сложности, месторас­положению и зрелости компонентами устанавливается на основе дей­ствия механизма гетерохронии, выражающегося в избирательном и неодновременном росте различных структурных образований. Ге­терохрония проявляется в разном времени закладки, в разных темпах развития и в разных моментах объединения этих структур в онтогенезе.

Сформулированный А. Н. Севсрцовым принцип гетерохронии раз­вития органов и систем был использован Г1. К. Анохиным и получил свое детальное развитие в теории системогенеза.

«Одной из основных закономерностей жизни организма является непрерывное развитие, поэтапное включение и смена его функциональ­ных систем, обеспечивающее ему адекватное приспособление па различ­ных этапах постнатальной жизни».

«Могучим средством эволюции, благодаря которому устанавливают­ся гармонические отношения между всеми многочисленными и различ­ными гю сложности компонентами функциональной системы… являет­ся гетерохрония в закладках и темпах развития различных структурных образовании…» (Анохин Г1. К., 1968. — С. 81).

Гетерохрония выступает как специальная закономерность, состоя­щая в неравномерном развертывании генетической информации. Бла­годаря этому обеспечивается основное требование выживания ново­рожденного — гармоническое соотношение структуры и функции данного новорожденного организма с условиями среды.

Она же служит решению важнейшей задачи эволюции — постепен­ному наделению новорожденного организма полноценными и жизнен­но важными (в соответствии с возрастом) функциональными система­ми.

А это означает, что избирательный гетсрохронный рост различных структур организма, в том числе и мозга как неоднородного целого, бу­дет выражаться в виде неравномерного их созревания.

Это может быть развитие отдельных клеточных элементов, их объединений и проводя­щих путей, которые принимают участие в объединениях с другими структурами, находящихся за се пределами, и позволяют решать пове­денческие задачи, соответствующие возрасту ребенка.

Таким образом, гетерохронность выступает центральным условием формирования ФС.

Закономерности неравномерного развития объединяются введенным в 1937 году понятием «системогенез», с помощью которого рассматри­вается избирательное и ускоренное по темпам развития в эмбриогенезе разнообразных по качеству и локализации структурных образований.

Последние, консолидируясь в целое, интегрируют полноценную фун­кциональную систему, обеспечивающую новорожденному выживание (Анохин П. К., 1968).

Термин «системогенез» отражает, таким образом, появление функций, а не органов, то есть появление полнопенных фун­кциональных систем с положительным приспособительным эффектом.

Системогенез, как формирование функциональных систем, проис­ходит поэтапно, неравномерно, в соответствии со все более усложня­ющимися формами взаимодействия организма и среды и проявляется в двух основных формах.

Внутрисистемная гетерохрония связана с постепенным усложне­нием конкретной функциональной системы.

Первоначально форми­руются элементы, обеспечивающие более простые уровни работы си­стемы, затем к ним постепенно подключаются новые элементы, что приводит к более эффективному и сложному функционированию си­стемы.

Например, у новорожденного ребенка есть готовые системы, обеспечивающие ряд важных, но элементарных процессов — дыхания, сосания, глотания. В то же время у него можно видеть значительное несовершенство двигательных, зрительных, слуховых функций.

Наряду с внутрисистемной, имеет место и межсистемная гетеро­хрония, которая связана с неодновременной закладкой и формирова­нием разных функциональных систем.

Например, автоматическое схватывание на первых месяцах жизни предмета, вложенного в руку, постепенно усложняется за счет появления зрительного контроля над действием руки, возникает межсистемная, зрительно-моторная коор­динация (Анохин П. К., 1968; Бадалян Л. О., 1987).

П. К. Анохин выделяет ряд основных закономерностей, принципов, действующих от момента закладки того или иного компонента систе­мы до появления полноценной функциональной системы.

1.

  Принцип гетерохронией закладки компонентов функциональной системы рассматривался выше и в концентрированном виде суть его действия состоит в том, что, независимо от сложности и про­стоты закладываемых в разное время структурных компонентов функциональной системы, все они к определенному времени со­ставляют функциональное целое — функциональную систему. Например, первичные поля анализаторных систем закладывают­ся и созревают раньше ассоциативных областей мозга, но к опре­деленному возрасту все они включаются в обеспечение различ­ных функциональных систем.

2.   Принцип фрагментации органа указывает на постепенное созре­вание, на неоднородный состав органа в каждый момент разви­тия. В первую очередь развиваются те его фрагменты, которые будут необходимы для реализации жизненно важной функции в ближайший период онтогенеза.

При этом происходят опережающая закладка и развитие тех час­тей функциональной системы, которые окажутся наиболее важ­ными для решения адаптационных задач в ближайшее время {принцип опережающего развития). Например, в эмбриогенезе нервная система закладывается раньше, чем другие органы орга­низма, поскольку в ближайшее время будет выполнять функцию их регуляции.

3.   Принцип консолидации компонентов функциональной системы на­чинает действовать с того момента, когда отдельные, раздельно созревающие ее компоненты достигают той степени зрелости, ко­торая оказывается достаточной для их объединения в систему.

Кри­тическим моментом в акте консолидации становится то, что один из компонентов занимает центральное, ведущее положение, и это при­дает системе определенную физиологическую архитектуру.

Наиболее активное связывание различных узлов функциональ­ных систем происходит в так называемые критические, сенситив­ные периоды и соответствует качественным перестройкам поведе­ния и психики. В ходе системогенеза происходят преобразования как внутри отдельных систем, так и между разными системами.

4.   Принцип минимального обеспечения функциональной системы за­ключается в том, что по мере созревания отдельных структурных единиц до определенной степени происходит их объединение в какую-то минимальную, несовершенную, но, тем не менее, ар­хитектурно и функционально полноценную ФС.

Благодаря это­му она становится в какой-то степени продуктивной, начинает выполнять приспособительную роль задолго до того, как полнос­тью созреет и все ее звенья получат окончательное структурное оформление.

Так, система, обеспечивающая зрительное восприя­тие, начинает функционировать с момента рождения ребенка, но ее роль в адаптивных возможностях претерпевает в ходе онтогене­за значительные изменения.

В своей теории П. К. Анохин рассматривал вопросы структуры и формирования функциональных систем, обеспечивающих врож­денные функции организма.

Обращаясь к позже и тонко организо­ванным функциональным системам, которые обеспечивают приоб­ретаемые поведенческие акты в раннем и позднем постнатальном онтогенезе человека, он отмечает, что их формирование хоть и являет­ся менее демонстративным, но представляет собой реализацию того же генетического хода, тех же закономерностей, что и в пренаталь- ный период.

В теории П. К. Анохина был раскрыт вопрос о том, что должна пред­ставлять физиологически функциональная система, каков биологи­ческий смысл ее существования и какие механизмы обеспечивают ее формирование.

теория функциональных систем – предыдущая | следующая – теория функциональных систем-3

Оглавление – Мекадзе Ю. В. Нейропсихология детского возраста

Консультация психолога детям, подросткам и взрослым

Источник: //vprosvet.ru/biblioteka/teoriya-funkcionalnyih-sistem-2/

Системогенез

Системогенез

Системогенез (греч.

systema — соединение с одно целое + genesis — происхождение, развитие) — избирательное и ускоренное по темпам развития различных по локализации структурных образований, которые, консолидируясь в единую функциональную систему, обеспечивают адаптивное существование организма, его выживание.

Системогенез является следствием длительного филогенетического развития и закрепления наследственностью наиболее прогрессивных форм приспособления; вместе с тем позволяет понять закономерности преобразования органов и структур организма на всем протяжении онтогенеза.

Представление о системогенезе было разработано П.К. Анохиным.

Теория основывается на экспериментальных исследованиях, показавших, что в раннем онтогенезе отдельные элементы органа созревают постепенно и неравномерно и, объединяясь с наиболее рано созревающими элементами другого органа, принимающего участие в реализации данной функции, создают функциональную систему.

Разные функциональные системы в зависимости от их значимости в обеспечении адаптивного существования и развития организма созревают в разные сроки постнатальной жизни. Это обеспечивает высокий приспособительный эффект развития организма на каждом этапе онтогенеза, отражая надежность функционирования биологических систем. П.К.

Анохин сформулировал следующие принципы системогенеза: 1)принцип гетерохронной закладки компонентов функциональной системы — неодновременной закладки и разной скорости формирования различных по сложности компонентов функциональной системы (более ранняя закладка и формирование более сложных компонентов) — эти компоненты “подгоняются” к одновременному началу функционирования в рамках данной системы; 2) принцип фрагментации органа — формирования отдельных функциональных систем на последовательных этапах онтогенеза — состав данного органа в каждый момент развития неоднороден по своей зрелости; наиболее зрелыми оказываются те элементы, которые должны обеспечить реализацию систем, формирующихся на более ранних этапах; 3) принцип минимального обеспечения функциональных систем – функциональная система становится “продуктивной”, обеспечивающей достижение результата и имеющей все необходимые составляющие до того, как все ее компоненты получат окончательное структурное оформление.

Количественные и качественные изменения функционирования организма на разных этапах изменений приводят к необходимости четкой характеристики этапов развития и выбора критериев их различения.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная литература

1. Атлас «Нервная система человека. Строение и нарушения». /Под ред. Ю.В. Микадзе и В.М.Астапова. – М.: ПЕР СЭ, 2003.

2. Дубровинская Н.В., Фарбер Д.А., Безруких М.М. Психофизиология ребенка. –М.: Гуманит. Издат. Центр ВЛАДОС, 2000.

3. Липченко В.Я., Самусев Р.П. Атлас нормальной анатомии человека. – М.: Медицина, 1989.

4. Сапин М.Р., Брыскина З.Г. Анатомия и физиология детей и подростков. –

5. Смирнов В.М. Нейрофизиология и высшая нервная деятельность. – М.: Академия, 2000.

6. Смирнов В.М., Будылина С.М. Физиология сенсорных систем и высшая нервная деятельность. – М.: Академия, 2003.

7. Шульговский В.В. Основы нейрофизиологии. – М.: Аспент-Пресс, 2000.

8. Югосова, Е.А., Турова Т.Ф. Возрастная анатомия и психофизиология. Учебное пособие для студентов средних педагогических учебных заведений для бакалавриата.– М.: Академия, 2011.

Дополнительная литература

1. Анохин П.К. Очерки по физиологии функциональных систем. – М.: Медицина, 1975.

2. Безруких М.М., Сонькин В.Д., Фарбер Д.А. Хрестоматия по возрастной физиологии. – М., Издательский центр « Академия», 2002. – 288с.

3. Бернштейн Н.А. О построении движений. – М.: АН СССР, 1971.

4. Лурия А.Р. Основы нейропсихологии. – М.: МГУ, 1979.

5. Нейман Л.В., Богомильский М.Р. Анатомия, физиология и патология органов слуха и речи. – М.: Гуманит. издат. центр ВЛАДОС, 2001.

6. Симонов П.В. Лекции о работе головного мозга. М. Инст. психол. РАН, 1998.

7. Шульговский В.В. Физиология центральной нервной системы. – М.: МГУ, 1997.

8. Экклс Дж. Физиология синапсов. – М.: Мир, 1966.

Вопросы к экзаменам по курсу «Основа нейрофизиологии и ВНД»

1. Структура и функции нервной системы.

2. Рефлекторный принцип функционирования нервной системы.

3. Строение и функции нервной ткани.

4. Нервный центр и его функции.

5. Мембранный потенциал (потенциал покоя).

6. Нервный импульс (потенциал действия).

7. Структура и функция синапса.

8. Медиаторы нервной системы.

9. Структурно-функциональная организация спинного мозга.

10. Структурно-функциональная организация продолговатого мозга.

11. Структурно-функциональная организация среднего мозга.

12. Структурно-функциональная организация промежуточного мозга.

13. Структура и функции вегетативной нервной системы.

14. Гипоталамус – главный центр регуляции вегетативных функций.

15. Гипоталамическая регуляция секреторной активности гипофиза.

16. Функции лимбической системы.

17. Функции коры большого мозга и их локализация.

18. Функции ретикулярной формации.

19. Сенсорные системы (анализаторы), их структура.

20. Передача и обработка информации в анализаторах.

21. Кодирование сенсорной информации в нервной системе.

22. Функциональные блоки мозга (по А.Р.Лурия).

23. Бодрствование и сон, регуляция функционального состояния.

24. Теория функциональных систем П.К.Анохина.

25. Системогенез.

26. Рефлексы и их классификация.

27. Условия и механизм образования условных рефлексов.

28. Созревание условных рефлексов в онтогенезе.

29. Безусловные рефлексы, инстинкты.

30. Внутреннее торможение условных рефлексов.

31. Внешнее торможение условных рефлексов.

32. Теория И.П.Павлова о типах ВНД.

33. Особенности ВНД человека.

34. Речь и ее функции.

35. Биологическое значение памяти и ее классификация.

36. Кратковременная память.

37. Долговременная память.

38. Мышление.

39. Внимание.

40. Восприятие и представление.

41. Ощущение и восприятие.

42. Потребности, эмоции.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/7_37222_funktsionalnoe-sostoyanie-organizma-bodrstvovanie-i-son.html

Системогенез – это… Что такое Системогенез?

Системогенез
избирательное созревание функциональных систем и их отдельных частей в процессе онтогенеза; динамика становления и автоматизации разнообразных приобретенных навыков с конечными приспособительными результатами Наряду со становлением различных функциональных систем (Функциональные системы) процессы С.

включают и их избирательную инволюцию в пожилом и старческом возрасте, а также проявление в стрессовых ситуациях ранее элиминированных функциональных систем. Суть С.

составляют принцип избирательности (гетерохронии) в развитии отдельных функциональных систем и их компонентов (в пренатальный период, как правило, избирательно и ускоренно созревают функциональные системы, которые обеспечивают выживание новорожденного сразу после рождения); принцип консолидации элементов в функциональных системах (формирующиеся в эмбриогенезе сначала дистантно и изолированно и функционирующие раздельно морфологические элементы объединяются в функциональные системы при достижении полезных для организма приспособительных результатов); принцип минимального обеспечения функций (на ранних стадиях онтогонеза обеспечение функций осуществляется минимумом входящих в функциональную систему элементов; число их может увеличиваться по мере совершенствования деятельности функциональных систем и снова уменьшаться при автоматизации их деятельности).

Еще в начале 70-х гг. П.К. Анохин выдвинул положение о генетической детерминации функциональных систем. Он полагал, что отдельные эмбриональные клетки, расположенные дистантно, но обеспечивающие одну конечную функцию организма, имеют синхронизированную во времени генетическую программу развития. Эти механизмы обеспечивают синхронное включение в работу определенных генных локусов. Эти представления П.К. Анохина в полной мере соответствовали достижениям генетики, выявившим существование систем генов в пределах одной клетки, в пределах геномов различных клеток, а также онтогенетических перестроек генетического аппарата. В свою очередь, данные генетики были подтверждены результатами физиологических исследований, посвященных изменениям нейрональных функций при генных мутациях и системному выключению мозговых структур при наследственных заболеваниях, а также избирательному образованию нейрональных связей в культуре нервной ткани.

Системогенез поведения отдельных нервных клеток при нейрогенезе эмбрионов позволил выделить две основные формы образования контактов между развивающимися нервными клетками. При одной форме процессы морфогенеза жестко детерминированы генетическим аппаратом клетки. В этом случае ориентация нервных клеток по отношению к соседним элементам, пути их миграции, а также рост нервных отростков строго определены процессами ядерного синтеза. В конце своего пути аксоны таких клеток встречают клетки-реципиенты, мембрана которых способна к образованию межклеточных контактов. Вторая форма клеточного поведения развивающихся нейронов детерминирована средовыми факторами. В этом случае клетки мигрируют, и их отростки в процессе своего роста «ищут» адекватную ткань. Активный поиск допускает отступление от строгой пространственной детерминации клеточных систем. Происходит активное адаптивное восприятие клетками химических, механических и электрических факторов среды. Периоды адаптивно и жестко детерминированного поведения одной и той же клетки могут чередоваться во времени. Пространственно-временное, жесткое и адаптивное поведение различных клеток в конечном итоге приводит к созданию определенных клеточных объединений. Клеточная основа функциональных систем формируется до того как эти системы начнут выполнять свои конечные приспособительные функции.

Современные методы выделения отдельных генов и молекулярных продуктов их экспрессии делают реальным в ближайшем будущем определение основных этапов их функционирования — от активности генов к клеточным, тканевым процессам и специфической функции.

Для каждого вида животного имеется свой характерный для его экологии набор наиболее ускоренно созревающих функциональных систем, обеспечивающих оптимальное выживание, т.е. свой специфический С. Показано, что в пренатальном периоде избирательно формируются внутренние механизмы саморегуляции функциональных систем: дыхания и выделения; системы определяющей оптимальный для метаболизма организма уровень АД; системы питания. К концу пренатального периода формируется функциональная система, обеспечивающая прохождение плода через родовые пути. Характерной чертой С. является созревание функций навстречу экологическим факторам. Ярким примером этого служит избирательное созревание у новорожденного кенгуру двигательного аппарата, обеспечивающего животному сразу после рождения возможность надежного перемещения в сумку матери, где происходит его дальнейшее дозревание. Была продемонстрирована избирательность опереждающего созревания у новорожденных грачей структур, обеспечивающих осуществление пищевой реакции в виде раскрывания клюва в ответ на действие закрепленных в эволюции экологических факторов: сотрясение гнезда, обдувание спинки граченка струей воздуха, характерные звуки. Подробно изучена последовательность включения различных функциональных систем животных и человека в постнатальном периоде. Установлено, что в этот период происходит избирательное дозревание внешних звеньев саморегуляции отдельных гомеостатичееских функциональных систем. В частности, под непосредственным влиянием организма родителей и факторов среды обитания дозревают внешние звенья функциональных систем питания и выделения. В раннем постнатальном периоде активно включаются поведенческие врожденные функциональные системы ориентировочно-исследовательского, оборонительного, игрового поведения. Позднее к ним присоединяются функциональные системы группового и социального поведения и некоторые другие системы, зависящие от экологических, а у человека — от социальных факторов среды. Наиболее поздно у человека созревает функциональная система полового поведения. В постнатальном периоде избирательно созревают механизмы, обеспечивающие формирование различных поведенческих актов животных и человека. К показателям поведенческих реакций и их вегетативного обеспечения с применением телеметрической техники можно проследить, как из отдельных элементов поведения целенаправленно достигаются адаптивные приспособительные результаты. В ответ на действие соответствующих раздражителей сначала появляются отдельные автоматизмы или рефлекторные движения конечностей, туловища головы, а также вегетативные реакции, не приводящие к достижению полезных для организма результатов. Такие реакции отчетливо проявляются, например, в функциональной системе питания. Отдельные двигательные автоматизмы в ней оформляются в виде сосательных движений новорожденных, что может не приводить к пищевому поведению. При выработке определенного режима кормления уже в течение первых дней жизни деятельность функциональной системы питания консолидируется. Она обеспечивает целенаправленные реакции новорожденных на пищевые раздражители, сопровождающиеся вегетативными изменениями, в частности дыхания и сердечной деятельности; в постнатальном онтогенезе более зрелые функциональные системы для достижения своих полезных приспособительных результатов начинают включать двигательные навыки, свойственные другим функциональным системам. Отдельные элементы группового, оборонительного и полового поведения могут предварительно усовершенствоваться, включаясь в другую функциональную систему — игровое поведение. Внешние факторы могут стимулировать или тормозить включение отдельных поведенческих элементов в целостные функциональные системы. По мере того как происходит освоение организмом окружающей среды, его поведенческие функциональные системы становятся все более сложными. Жесткая постоянная связь функциональных систем с определенными морфологическими элементами, как это имеет место у врожденных функциональных систем, у поведенческих систем в значительной степени отсутствует. Функциональные системы приобретают оперативный характер. Системогенез поведенческих актов включает эволюционное, врожденное и индивидуально приобретенное совершенствование системных «квантов» поведенческой деятельности (см. Функциональные системы), направленных на удовлетворение различных жизненно важных потребностей животных я человека. В отдельных «квантах» поведения, особенно обеспечивающих удовлетворение биологических (метаболических) потребностей, имеются врожденные механизмы биологических мотиваций голода, стража, жажды, полового влечения и др. Однако наряду с этим в процессе индивидуальной жизни субъектов, их общения со средой обитания, родителями и сверстниками совершенствуются способы удовлетворения потребности, увеличивается спектр условных раздражителей, способствующих или, наоборот, препятствующих удовлетворению потребности, и, наконец, значительно обогащается аппарат предвидения удовлетворения потребности — акцептор результатов действия. Эти процессы особенно отчетливо выявляются при наблюдении онтогенетического развития поведения животных в естественной среде обитания. Исследования, проведенные на лосятах в естественной среде их обитания, представили примеры постнатального избирательного совершенствования отдельных системных «квантов» поведения, направленных на удовлетворение биологических потребностей животных. При этом выявлено значение первого подкрепления, например в формировании пищевой функциональной системы. При первом достижении результата происходит запечатление способа его достижения и всех свойств раздражителей, сопровождающих прием пищи, т. е. формируется специфическая функциональная система. В результате последующих запечатлений животными свойств достигнутого результата происходит обучение средствам его достижения и совершенствование поведенческих функциональных систем в постнатальном периоде. Отдельные функциональные системы при относительно стабильных условиях жизни индивидов нередко переходят на автоматизированный (подсознательный) режим работы.

Системогенез поведенческого акта не ограничивается «квантами» поведения, направленными на, удовлетворение биологических потребностей индивидов. У человека он включает становление и совершенствование деятельности, обеспечивающей удовлетворение социальных потребностей, стремление к профессиональному образованию, культуре, различным формам общественной и государственной деятельности.

Системогенез распространяется на особенности формировании функциональных систем психической деятельности в различные возрастные периоды жизни человека, их становление, автоматизацию и динамическое элиминирование.

Формирование функциональных систем психической деятельности связано с развитием речи ребенка, общеобразовательным и специальным (музыкальным, художественным и др.) обучением. В этих функциональных системах нередко отсутствует внешнее поведенческое звено, оно заменяется психическими процессами.

Различные функциональные системы психического уровня определяют поведение человека и постоянно контролируют его.

Системогенез охватывает различные ведущие черты жизнедеятельности человека от эмбриогенеза до глубокой старости, причем новообразование функциональных систем не заканчивается по достижении зрелости. Оно продолжается в зрелый период, однако происходит при участии морфологически зрелых элементов и автоматизированных поведенческих стереотипов. В процессе естественного старения, по-видимому, избирательно выключаются определенные функциональные системы или их отдельные компоненты. При этом еще возможно новообразование некоторых компенсаторных функциональных систем стареющего организма.

В детском возрасте у человека созревает функциональная система группового общения, которая может рассматриваться как этапная форма перехода к сложному социальному поведению. Представления о популяционном С. ставят вопрос о неоднородности детей в группе, неравномерном индивидуальном развитии в школьном возрасте, что имеет большое социальное значение.

Теория С. все более активно внедряется в детскую неврологию и хирургию, помогает оценивать возможности компенсации утраченных функций, подавления первичных автоматизмов и стимуляции развития нужных навыков, проводить анализ системных нарушений, которые возникают при нервных расстройствах у детей. С концепцией системогенеза связаны представления о недоразвитии отдельных функциональных систем и об относительной незрелости отдельных элементов системы как о причинах возникновения врожденных или приобретенных дефектов развития детского организма.

Библиогр.: Системогенез, под ред. К.В. Судакова, М., 1980; Функциональные системы организма, под ред. К.В. Судакова, с. 353, М., 1987.

процесс формирования функциональных систем и их отдельных частей в ходе фило- и онтогенеза.

Источник: //dic.academic.ru/dic.nsf/enc_medicine/29006/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%BE%D0%B3%D0%B5%D0%BD%D0%B5%D0%B7

Ваш Недуг
Добавить комментарий