Окисление перекисное

Окисление перекисное — Медицинская энциклопедия

Окисление перекисное

Окисле́ние пе́рекисное

Сложный многостадийный цепной процесс окисления кислородом липидных субстратов, главным образом полиненасыщенных жирных кислот, включающий стадии взаимодействия липидов со свободнорадильными соединениями и образования свободных радикалов липидной природы.

О. п. фосфолипидов биологических мембран играет важную роль в жизнедеятельности живых организмов. Усиление процессов О. п. имеет существенное значение в этиологии и патогенезе многих заболеваний и развитии последствий различных экстремальных воздействий.

Перекисное окисление является частным случаем жидкофазного окисления углеводородов. Оно представляет собой типичный цепной процесс с выраженным разветвлением. О. п. может включить стадии неферментативного аутоокисления и ферментативные реакции. Ферментативный и неферментативный пути О. п.

приводят к образованию свободных радикалов липидов в несколько основных этапов: инициирование (зарождение цепи) , , продолжение цепи ; разветвление цепи ; обрыв цепи молекулярные продукты, молекулярные продукты, молекулярные продукты, где RH — субстрат окисления (полиненасыщенная жирная кислота). В инициировании О. п.

решающую роль играют так называемые активные формы кислорода, в первую очередь кислородные радикалы, содержащие неспаренные электроны.

В результате одноэлектронного восстановления молекулярного кислорода О2 в клетках образуется супероксидный анион-радикал который возникает в электронпереносящей цепи митохондрий, хлоропластов, в реакциях, катализируемых некоторыми окислительными ферментами, при аутоокислении моноаминов и других соединений.

При реакции дисмутации двух супероксидных радикалов образуется молекула перекиси водорода Н2О2; Другими источниками перекиси водорода являются реакции, катализируемые некоторыми оксидазами.

В клетках существуют специальные системы обезвреживания токсичных кислородных радикалов, в частности ферментные: супероксиддисмутаза, катализирующая превращение супероксида в перекись водорода, каталаза и пероксидазы, катализирующие реакции, в которых перекись водорода восстанавливается до воды.

К наиболее реакционноспособным и поэтому наиболее опасным радикалам кислорода относится гидроксильный радикал •ОН — один из основных повреждающих факторов при действии на живой организм ионизирующего излучения (Ионизирующие излучения).

Значительная часть радикалов •ОН в живых организмах генерируется в результате реакций перекиси водорода и супероксидных радикалов с каталитическими количествами металлов переменной валентности, в первую очередь, с ионами железа и меди. Относительно малоактивные и долгоживущие и Н2О2 могут служить источником взаимодействующего практически со всеми классами биомолекул радикала •ОН в присутствии микроколичеств свободных железа или меди. Наряду с радикалом •ОН непосредственными инициаторами О. п. могут быть и другие свободные радикалы, например протонированный супероксид-анион , а также синглетный кислород и ряд других активных форм кислорода.

Продукты О. п., в частности перекиси липидов, используются в организме для синтеза биологически активных веществ — простагландинов (Простагландины), тромбоксанов, стероидных гормонов (Гормоны) и т.д. Интенсивность О. п.

непосредственно связана с процессами обновления состава фосфолипидов биологических мембран, изменения относительного содержания липидов и белков и как следствие с изменением структуры биологических мембран и их функционирования. В живых организмах существует сложная система регуляции интенсивности процесса О. п. В норме процессы образования и расходования продуктов О. п.

хорошо сбалансированы, что определяет их относительно низкое содержание в клетках. Скорость О. п. на уровнях инициирования, продолжения и обрыва цепи в значительной степени определяется структурной организацией липидов в биологической мембране. которая влияет на доступность остатков ненасыщенных жирных кислот (Жирные кислоты) для кислорода.

Факторы, нарушающие «упаковку» липидов в биологической мембране, ускоряют, а факторы, поддерживающие структурированность липидов (например холестерин), тормозят О. п. Другим регуляторным компонентом системы О. п.

являются ферменты, участвующие в образовании (например, некоторые оксидазы) или гибели (супероксиддисмутаза) активных форм кислорода и свободных радикалов, а также в разложении перекисей без образования свободных радикалов (каталаза, пероксидазы). Активность этих ферментов также может зависеть от структурированности липидного бислоя биологической мембраны.

Практически на всех стадиях О. п. существенную модуляторную роль играют факторы, регулирующие обмен фосфолипидов биологических мембран и влияющие на скорость окисления путем изменения липидного состава мембран. Чрезвычайно важное значение в регуляции О. п.

имеют многочисленные низкомолекулярные соединения, выполняющие функции инициаторов, катализаторов, ингибиторов, тушителей, синергистов этого процесса. К числу важнейших стабилизаторов биологических мембран относится природный антиоксидант (ингибитор О. п. ) витамин Е; другими природными антиоксидантами являются гормоны тироксин и кортикостероиды, витамин К, глутатион. Свойствами прооксидантов (веществ, усиливающих О. п.) обладают ионы металлов переменной валентности, витамины С, D и др.

При развитии патологического процесса баланс образования и расходования перекисей и других продуктов О. п. может нарушаться, метаболиты О. п.

накапливаются в тканях и биологических жидкостях, что приводит к серьезным нарушениям, в первую очередь, в биологических мембранах. Следствием активизации О. п.

может быть изменение физико-химических свойств мембранных белков и липидов, изменение активности мембранно-связанных ферментов, нарушение проницаемости мембран (в т.ч.

для протонов и ионов кальция), ионного транспорта (например, угнетение натриевого насоса), уменьшение электрической стабильности липидного бислоя мембран. Активация О. п. приводит к изменению структуры липопротеинов сыворотки крови и гиперхолестеринемии, нарушает разнообразные процессы клеточного метаболизма практически на всех уровнях.

Токсичными для организма являются не только образующиеся в результате О. п. перекиси, но и продукты более глубокого окисления липидов альдегиды, кетоны, кислоты. Карбонильные продукты О. п.

ингибируют ряд ферментов, подавляют синтез ДНК, увеличивают проницаемость капилляров, модифицируют агрегацию тромбоцитов и проявляют ряд других нежелательных эффектов. Инициирующие О. п.

и возникающие в процессе окисления реактивные свободные радикалы вызывают повреждение структуры нуклеиновых кислот (Нуклеиновые кислоты), прежде всего ДНК, деструкцию нуклеотидных коферментов (Коферменты), нарушения функционирования ферментов (в первую очередь SH-ферментов), ковалентную модификацию различных биомолекул. Следствием избыточной генерации свободных радикалов могут быть патологические изменения свойств сосудов.

Активация О. п. (так называемый синдром липидной пероксидации) является общим ключевым фактором, опосредующим повреждение мембранных структур органов и тканей при многих заболеваниях (за рубежом для таких заболеваний принят термин «свободнорадикальная патология»). Активация О. п.

и роль в патогенезе показана при многих заболеваниях печени, артритах, атеросклерозе, ряде инфекций, вызываемых паразитами (например, малярии), заболеваниях легких, гипоксических, гипероксических и реперфузионных повреждениях органов и тканей, злокачественных опухолях, травмах, ожогах, катаракте и др. Для чрезмерной активации О. п.

, наблюдаемой в плазме (сыворотке) крови при идиопатическом гемохроматозе, в сыворотке крови и синовиальной жидкости при артритах и остеоартрите, в цереброспинальной жидкости при нейрональном липофусцинозе, основу создает избыток свободного железа и (или) меди в соответствующих органах. Возможная активация О. п.

должна быть учтена при проведении лучевой терапии, ультрафиолетовом облучении, действии на организм различных полей (в т.ч. магнитного). При лечении в условиях гипербарической оксигенации возникающее в начале усиление О. п. за счет генерации активных форм кислорода исчезает после нескольких сеансов оксигенации.

На разнообразных моделях стресса показано, что активация О. п. свидетельствует о срыве адаптивных механизмов и опосредует различные проявления повреждающего действия экстремальных факторов.

Для профилактики и терапии состояний, связанных с чрезмерной активацией О. п.

, могут быть использованы антиоксиданты, вещества, специфически реагирующие с определенными свободными радикалами (ловушки или перехватчики), специфические вещества, образующие комплексные соединения с металлами переменной валентности, а также различные пути активации эндогенных систем антирадикальной защиты организма (например, постепенная адаптация к гипоксии или другим факторам).

В связи с важной ролью О. п. в патогенезе различных заболеваний определение продуктов этого процесса (главным образом конъюгированных диенов, малонового диальдегида), спонтанной и индуцированной хемилюминесценции в биологическом материале (сыворотке и плазме крови, эритроцитах, моче, конденсате выдыхаемого воздуха и т.д.) имеет все возрастающее диагностическое и прогностическое значение.

Библиогр.: Владимиров Ю.А. и Арчаков А.И. Перекисное окисление липидов в биологических мембранах, М., 1972; Меерсон Ф.З. Адаптация, стресс, профилактика, М., 1981.

Источник: Медицинская энциклопедия на Gufo.me

Источник: //gufo.me/dict/medical_encyclopedia/%D0%9E%D0%BA%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D0%B5%D1%80%D0%B5%D0%BA%D0%B8%D1%81%D0%BD%D0%BE%D0%B5

Перекисное окисление липидов при физических нагрузках

Окисление перекисное

Когда на следующий день после тренировки болит все тело, мало кто задумывается о таких понятиях, как перекисное окисление липидов и окислительный стресс.

Это слова из области физиологии, а мы не хотим изучать физиологию, мы хотим худеть, приводить в тонус или наращивать мышцы и поменьше сталкиваться с негативными последствиями.

Тем не менее, если понять, какие процессы происходят в организме, становится ясно, какие меры принимать, чтобы не было мучительно больно.

Механизмы окислительного стресса: почему так больно после тренировок?

Когда мы выполняем физическую работу, клеткам нужно больше энергии. Основной метод её получения для клеток – окисление глюкозы в присутствии кислорода.

Под нагрузкой потребность в живительном газе возрастает, но тот объем, который может быть разнесен по телу, ограничен: количеством вдыхаемого воздуха, мощностью сердечной мышцы, её способностью перегнать определенное количество крови, состоянием кровеносных сосудов, которые могут быть повреждены или забиты (атеросклероз).

Во время интенсивной тренировки организм переживает состояние гипоксии – недостатка кислорода. Ферменты, участвующие в дыхательной цепи клетки, при понижении концентрации кислорода переводят его в так называемые активные формы (АФК) с неспаренным электроном, которые в широких массах известны как свободные радикалы в организме.

Эти атомы способны взаимодействовать с жирами (фосфолипидами) клеточной оболочки, как бы ударяя их тем самым электроном и, в свою, очередь, превращая в переокиси – еще один вид свободных радикалов.

Те делятся электроном с соседями, и изменение структуры затрагивает все больше и больше молекул мембраны, перекидываясь и на соседние клетки.

Это и есть перекисное окисление липидов и окислительный стресс – цепная реакция, нарушающая структуру клеточных оболочек.

Самое неприятное с точки зрения физиологии спорта последствие перекисного окисления липидов – упомянутое нарушение мембран. Они становятся более проницаемыми, а это порождает:

  1. Отток питательных веществ из клеток, а значит, поврежденные мышечные волокна лишатся стройматериала для своего ремонта. В местах концентрации возникают воспалительные реакции, сопровождающиеся концентрацией жидкости, а следовательно, сдавливанием нервных окончаний и болью. Кроме того, в целом замедляется восстановление после тренировки.
  2. Затруднение передачи нервных импульсов (большую роль в этом играет кальций, а его концентрации в клетке и вне её нарушаются), а с ними – сократимость мышцы. Нарушается нейромышечная связь, способность развивать максимальное усилие, что снижает спортивные результаты.
  3. Повреждение мембран не только клеток, но и их внутренних органелл, в том числе, митохондрий – энергетических субстанций клетки. Они могут усвоить меньше кислорода, что ведет к усугублению гипоксии и нарастанию процессов ПОЛ.

Чтобы предотвратить избыточное перекисное окисление липидов (в норме оно дает материал для синтеза простагландинов и тромбоксанов), необходимо:

  • нейтрализовать образующиеся свободные радикалы в организме,
  • увеличивать максимально возможный перенос кислорода, чтобы избежать гипоксии.

С первой задачей справляются антиоксиданты, например, один из самых мощных – дигидрокверцетин. Вторая – комплексная, но для достижения каждой из тех целей, что она подразумевает, существуют натуральные средства:

На рынке доступно спортивное питание на основе природных компонентов, способное бороться с окислительным стрессом, улучшая спортивные результаты без побочных эффектов, характерных для фармакологических средств.

Дела на работе, домашние заботы, соцсети – все это нещадно пожирает наше свободное время. Даже поход в фитнес-зал после 30 лет дается непросто. При этом банальная зарядка с гантелями уже вас не устраивает и хочется чего-то большего. Какие главные причины заниматься спортом? Где взять мотивацию записаться в секцию плавания, боевых искусств или просто поиграть в…

Читать далее

Спортсмены-вегетарианцы сегодня мало кого удивляют. Многие звезды спорта осознанно выбирают такой путь и остаются только в выигрыше. Куда более удивителен тот факт, что подобная практика существовала задолго до того, как вегетарианство стало мейнстримом. Великие атлеты прошлого принципиально отказывались от мяса, но при этом продолжали бить рекорд за рекордом. Кто же эти герои, и в чем…

Читать далее

Всего одна-две таблетки – и на весах килограммов на три меньше! Мочегонные средства для похудения творят поистине чудеса, да и стоят недорого. И спортсмены их принимают, когда входят в весовую категорию. Только перенимая в обычную жизнь методы из спорта, мы не думаем, что там на алтарь победы кладется здоровье. Мы-то хотим быть красивыми и стройными,…

Читать далее

Неправильная работа нашего «мотора» может указывать на такую болезнь, как мерцательная аритмия сердца.

Обычно патология характеризуется нарушением ритма, чувством замирания в области груди и частым сердцебиением.

Осложнения аритмии чреваты образованием тромбов, а это значит, что запущенная болезнь, если её не лечить, может перерасти в инфаркт или инсульт. Как предупредить сердечный недуг? Что делать, если заболевание…

Читать далее

Источник: //leveton.su/perekisnoe-okislenie-lipidov/

Перекисное окисление липидов, роль в патогенезе повреждений клетки

Окисление перекисное

Кислород, необходимый организму для функционирования ЦПЭ и многих других реакций, является одновременно и токсическим веществом, если из него образуются так называемые активные формы.

К активным формам кислорода относят:

ОН• — гидроксильный радикал;

О2• — супероксидный анион;

Н2O2 — пероксид водорода.

Активные формы кислорода образуются во многих клетках в результате последовательного одноэлектронного присоединения 4 электронов к 1 молекуле кислорода. Конечный продукт этих реакций — вода, но по ходу реакций образуются химически активные формы кислорода.

Наиболее активен гидроксильный радикал, взаимодействующий с большинством органических молекул. Он отнимает от них электрон и инициирует таким образом цепные реакции окисления.

Эти свободнорадикальные реакции окисления могут выполнять полезные функции, например, когда клетки белой крови с участием активных форм кислорода разрушают фагоцитированные клетки бактерий.

Но в остальных клетках свободнорадикальное окисление приводит к разрушению органических молекул, в первую очередь липидов, и, соответственно, мембранных структур клеток, что часто заканчивается их гибелью. Поэтому в организме функционирует эффективная система ингибирования перекисного окисления липидов (ПОЛ).

А. Источники активных форм кислорода

ЦПЭ как источник активных форм кислорода

Утечка электронов из ЦПЭ и непосредственное их взаимодействие с кислородом — основной путь образования активных форм кислорода в большинстве клеток.

Кофермент Q в ЦПЭ принимает от доноров последовательно по одному электрону, превращаясь в форму семихинона (рис. 8-55) — КоQН• (см. раздел 6).

Этот радикал может непосредственно взаимодействовать с кислородом, образуя супероксидный анион О2•, который, в свою очередь, может превращаться в другие активные формы кислорода:

Рис. 8-55. Реакции последовательного восстановления убихинона в дыхательной цепи.

Реакции, катализируемые оксидазами и оксигеназами

Многие оксидазы — ферменты, непосредственно восстанавливающие кислород, образуют пероксид водорода — Н2O2. Оксидазы образуют пероксид водорода по схеме:

 O2 + SН2 —> S + Н2O2, где SН2 — окисляемый субстрат.

Примеры таких оксидаз — оксидазы аминокислот, супероксид дисмутаза, оксидазы, локализованные в пероксисомах. Оксидазы пероксисом окисляют, в частности, жирные кислоты с очень длинной углеродной цепью (более 20 углеродных атомов) до более коротких, которые далее подвергаются β-окислению в митохондриях.

Монооксигеназы, например, цитохром Р450, включающий один атом кислорода в окисляемую молекулу, и диоксигеназы, включающие оба атома кислорода, также служат источниками активных форм кислорода.

Пероксид водорода химически не очень активен, но способствует образованию наиболее токсичной формы кислорода — гидроксильного радикала (ОН•) по следующей реакции:

Fе2+ + Н2O2 —>Fе3+ + ОН- + ОН•.

Наличие в клетках Fе2+ или ионов других переходных металлов увеличивает скорость образования гидроксильных радикалов и других активных форм кислорода. Например, в эритроцитах окисление иона железа гемоглобина способствует образованию супероксидного аниона.

Б. Перекисное окисление липидов

Реакции перекисного окисления липидов (ПОЛ) являются свободнорадикальными и постоянно происходят в организме. Свободнорадикальное окисление нарушает структуру многих молекул. В белках окисляются некоторые аминокислоты.

В результате разрушается структура белков, между ними образуются ковалентные «сшивки», всё это активирует протеолитические ферменты в клетке, гидролизующие повреждённые белки. Активные формы кислорода легко нарушают и структуру ДНК.

Неспецифическое связывание Fе2+молекулой ДНК облегчает образование гидроксильных радикалов, которые разрушают структуру азотистых оснований. Но наиболее подвержены действию активных форм кислорода жирные кислоты, содержащие двойные связи, расположенные через СН2-группу.

Именно от этой СН2-группы свободный радикал (инициатор окисления) легко отнимает электрон, превращая липид, содержащий эту кислоту, в свободный радикал.

ПОЛ — цепные реакции, обеспечивающие расширенное воспроизводство свободных радикалов, частиц, имеющих неспаренный электрон, которые инициируют дальнейшее распространение перекисного окисления.

Стадии перекисного окисления липидов

1) Инициация: образование свободного радикала (L•)

Инициирует реакцию чаще всего гидроксильный радикал, отнимающий водород от СН2-групп полиеновой кислоты, что приводит к образованию липидного радикала.

2) Развитие цепи:

Развитие цепи происходит при присоединении O2, в результате чего образуется липопероксирадикал LOO• или пероксид липида LOOH.

ПОЛ представляет собой свободнорадикальные цепные реакции, т.е. каждый образовавшийся радикал инициирует образование нескольких других.

3) Разрушение структуры липидов

Конечные продукты перекисного окисления полиеновых кислот — малоновый диальдегид и гидропероксид кислоты.

4) Обрыв цепи — взаимодействие радикалов между собой:

Развитие цепи может останавливаться при взаимодействии свободных радикалов между собой или при взаимодействии с различными антиоксидантами, например, витамином Е, который отдаёт электроны, превращаясь при этом в стабильную окисленную форму.

В. Повреждение клеток в результате перекисного окисления липидов

Активные формы кислорода повреждают структуру ДНК, белков и различные мембранные структуры клеток. В результате появления в гидрофобном слое мембран гидрофильных зон за счёт образования гидропероксидов жирных кислот в клетки могут проникать вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению.

Активация перекисного окисления характерна для многих заболеваний: дистрофии мышц (болезнь Дюшенна), болезни Паркинсона, при которых ПОЛ разрушает нервные клетки в стволовой части мозга, при атеросклерозе, развитии опухолей.

Перекисное окисление активируется также в тканях, подвергшихся сначала ишемии, а затем реоксигенации, что происходит, например, при спазме коронарных артерий и последующем их расширении.

Такая же ситуация возникает при образовании тромба в сосуде, питающем миокард. Формирование тромба приводит к окклюзии просвета сосуда и развитию ишемии в соответствующем участке миокарда (гипоксия ткани).

Если принять быстрые лечебные меры по разрушению тромба, то в ткани восстанавливается снабжение кислородом (реоксигенация). Показано, что в момент реоксигенации резко возрастает образование активных форм кислорода, которые могут повреждать клетку.

Таким образом, даже несмотря на быстрое восстановление кровообращения, в соответствующем участке миокарда происходит повреждение клеток за счёт активации перекисного окисления.

Изменение структуры тканей в результате ПОЛ можно наблюдать на коже: с возрастом увеличивается количество пигментных пятен на коже, особенно на дорсальной поверхности ладоней.

Этот пигмент называют липофусцин, представляющий собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с химически активными группами продуктов ПОЛ.

Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, и поэтому накапливается в клетках, нарушая их функции.

ПОЛ происходит не только в живых организмах, но и в продуктах питания, особенно при неправильном приготовлении и хранении пищи.

Прогоркание жиров, образование более тёмного слоя на поверхности сливочного масла, появление специфического запаха у молочных продуктов — всё это признаки ПОЛ.

В продукты питания, содержащие ненасыщенные липиды, обычно добавляют антиоксиданты — вещества, ингибирующие ПОЛ и сохраняющие структуру компонентов пищи.

Г. Системы защиты клеток от активных форм кислорода

Ферменты антиоксидантного действия

К ферментам, защищающим клетки от действия активных форм кислорода, относят супероксиддисмутазу, каталазу и глутатионпероксидазу. Наиболее активны эти ферменты в печени, надпочечниках и почках, где содержание митохондрий, цитохрома Р450 и пероксисом особенно велико. Супероксиддисмутаза (СОД) превращает супероксидные анионы в пероксид водорода:

2 О2• + 2 Н+ —> Н2О2 + О2.

Изоферменты СОД находятся и в цитозоле и в митохондриях и являются как бы первой линией защиты, потому что супероксидный анион образуется обычно первым из активных форм кислорода при утечке электронов из дыхательной цепи.

СОД — ицдуцируемый фермент, т. е. синтез его увеличивается, если в клетках активируется перекисное окисление.

Пероксид водорода, который может инициировать образование самой активной формы ОН•, разрушается ферментом каталазой:

2 Н2О2 —> 2 Н2О + О2.

Каталаза находится в основном в пероксисомах, где образуется наибольшее количество пероксида водорода, а также в лейкоцитах, где она защищает клетки от последствий «респираторного взрыва» (см. раздел 6).

Глутатионпероксидаза — важнейший фермент, обеспечивающий инактивацию активных форм кислорода, так как он разрушает и пероксид водорода и гидропероксиды липидов.

Он катализирует восстановление пероксидов с помощью трипептида глутатиона (y-глутамилцистеинилглицин).

Сульфгидрильная группа глутатиона (GSН) служит донором электронов и, окисляясь, образует дисульфидную форму глутатиона, в которой 2 молекулы глутатиона связаны через дисульфидную группу.

Н2O2 + 2 GSH —> 2 Н2O + G-S-S-G.

Окисленный глутатион восстанавливается глутатионредуктазой:

GS-SG + NADPH + Н+ —> 2 GSH + NADP+.

Глутатионпероксидаза, которая восстанавливает гидропероксиды липидов в составе мембран, в качестве кофермента использует селен (необходимый микроэлемент пищи). При его недостатке активность антиоксидантной защиты снижается.

Витамины, обладающие антиоксидантным действием

Витамин Е (α-токоферол) — наиболее распространённый антиоксидант в природе — является липофильной молекулой, способной инактивировать свободные радикалы непосредственно в гидрофобном слое мембран и таким образом предотвращать развитие цепи перекисного окисления. Различают 8 типов токоферолов, но α-токоферол наиболее активен.

Витамин Е отдаёт атом водорода свободному радикалу пероксида липида (ROO•), восстанавливая его до гидропероксида (ROOH) и таким образом останавливает развитие ПОЛ (рис. 8-56).

Рис. 8-56. Механизм антиоксидантного действия витамина Е. Витамин Е (α-токофероп) ингибирует свободнорадикальное окисление путём отдачи электрона, что приводит к инактивации радикала липида, а витамин Е превращается в стабильный, полностью окисленный токоферолхинон.

Свободный радикал витамина Е, образовавшийся в результате реакции, стабилен и не способен участвовать в развитии цепи. Наоборот, радикал витамина Е непосредственно взаимодействует с радикалами липидных перекисей, восстанавливая их, а сам превращается в стабильную окисленную форму — токоферолхинон.

Витамин С (аскорбиновая кислота) также является антиоксидантом и участвует с помощью двух различных механизмов в ингибировании ПОЛ.

Во-первых, витамин С восстанавливает окисленную форму витамина Е и таким образом поддерживает необходимую концентрацию этого антиоксиданта непосредственно в мембранах клеток.

Во-вторых, витамин С, будучи водорастворимым витамином и сильным восстановителем, взаимодействует с водорастворимыми активными формами кислорода — O2•, Н2O2, ОН• и инактивирует их.

β-Каротин, предшественник витамина А, также обладает антиоксидантным действием и ингибирует ПОЛ.

Показано, что растительная диета, обогащённая витаминами Е, С, каротиноидами, существенно уменьшает риск развития атеросклероза и заболеваний ССС, подавляет развитие катаракты — помутнения хрусталика глаза, обладает антиканцерогенным действием.

Имеется много доказательств в пользу того, что положительное действие этих компонентов пищи связано с ингибированием ПОЛ и других молекул и, следовательно, с поддержанием нормальной структуры компонентов клеток.

Источник: //lifelib.info/biochemistry/biochemistry_4/57.html

Перекисное окисление липидов

Окисление перекисное

Перекисному окислению липидов подвергаютсяполиненасыщенные ЖК, свободные иливходящие в состав омыляемых липидов,при взаимодействии с активными формамикислорода.

Реакции переписного окисления липидов(ПОЛ) являются свободнорадикальными ипо¬стоянно происходят в организме.Свободнора-дикальное окисление нарушаетструктуру мно¬гих молекул. В белкахокисляются некоторые аминокислоты.

Врезультате разрушается струк¬турабелков, между ними образуются ковалент-ные«сшивки», всё это активируетпротеолити-ческие ферменты в клетке,гидролизующие повреждённые белки.Активные формы кисло¬рода легко нарушаюти структуру ДНК.

Неспе¬цифическоесвязывание Fe2+ молекулой ДНК облегчаетобразование гидроксильных радика¬лов,которые разрушают структуру азотистыхоснований. Но наиболее подверженыдействию активных форм кислорода жирныекислоты, содержащие двойные связи,расположенные через СН2-группу.

Именноот этой СН2-группы свободный радикал(инициатор окисления) лег¬ко отнимаетэлектрон, превращая липид, содер¬жащийэту кислоту, в свободный радикал.

ПОЛ — цепные реакции, обеспечивающиерасширенное воспроизводство свободныхра¬дикалов, частиц, имеющих неспаренныйэлек¬трон, которые инициируют дальнейшеераспро¬странение перекисного окисления.

В. ПОВРЕЖДЕНИЕ КЛЕТОК В РЕЗУЛЬТАТЕ

ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ

Активные формы кислорода повреждаютструктуру ДНК, белков и различныемембран¬ные структуры клеток. В результатепоявления в гидрофобном слое мембрангидрофильных зон за счёт образованиягидропероксидов жир¬ных кислот в клеткимогут проникать вода, ионы натрия,кальция, что приводит к набуха¬ниюклеток, органелл и их разрушению.

Акти¬вация перекисного окисленияхарактерна для многих заболеваний:дистрофии мышц (болезнь Дюшенна), болезниПаркинсона, при которых ПОЛ разрушаетнервные клетки в стволовой части мозга,при атеросклерозе, развитии опу¬холей.

Перекисное окисление активируетсятакже в тканях, подвергшихся сначалаишемии, а затем реоксигенации, чтопроисходит, напри¬мер, при спазмекоронарных артерий и после¬дующем ихрасширении.

Такая же ситуация возникает приобразова¬нии тромба в сосуде, питающеммиокард. Формирование тромба приводитк окклюзии про¬света сосуда и развитиюишемии в соответству¬ющем участкемиокарда (гипоксия ткани).

Если принятьбыстрые лечебные меры по разрушениютромба, то в ткани восстанавливаетсяснабже¬ние кислородом (реоксигенация).Показано, что в момент реоксигенациирезко возрастает об¬разование активныхформ кислорода, которые могут повреждатьклетку.

Таким образом, даже несмотря набыстрое восстановление кровооб¬ращения,в соответствующем участка миокардапроисходит повреждение клеток за счётактива¬ции перекисного окисления.

Изменение структуры тканей в результате

ПОЛ можно наблюдать на коже: с возрастом

увеличивается количество пигментныхпятен

на коже, особенно на дорсальной поверхности

ладоней. Этот пигмент называют липофусцин,

представляющий собой смесь липидов ибел¬

ков, связанных между собой поперечнымико-

валентными связями и денатурированнымив

результате взаимодействия с химическиактив¬

ными группами продуктов ПОЛ. Этот пигмент

фагоцитируется, но не гидролизуетсяфермен¬

тами лизосом, и поэтому накапливаетсяв клет¬

ках, нарушая их функции. °

ПОЛ происходит не только в живыхорганиз¬мах, но и в продуктах питания,особенно при

Регуляция ПОЛ

Процессы ПОЛ усиливаются при избыткекатехоламинов (стресс), гипоксии, ишемии,повышенном содержании активных формО2, снижении антиоксидантнойзащиты, повышенном содержании ненасыщенныхжирных кислот.

Биологическое значение ПОЛ

  1. Модифицирует физико-химические свойства биомембран: изменяется проницаемость, активность мембранных ферментов.

  2. Регулирует окислительное фосфорилирование.

  3. Синтез ряда гормонов (стероидных), простагландинов.

  4. Контроль клеточного деления.

  5. Обмен ХС

  6. Участвует в адаптации организма.

Повышение ПОЛ при патологии приводитк:

  1. Разрушению, фрагментации клеточных мембран, повреждению и гибели клеток.

  2. ПОЛ модифицирует ЛП, особенно ЛПНП. Они легче проникают в сосудистую стенку, лучше захватываются макрофагами, что ускоряет развитие атеросклероза.

  3. Продукт ПОЛ малоновый диальдегид (МДА) – токсичен, канцерогенен, мутагенен.

  4. ПОЛ ускоряет процесс старения организма.

Источник: //studfile.net/preview/3289023/page:8/

Ваш Недуг
Добавить комментарий