Биологическая доступность лекарственных средств

Биологическая доступность лекарственных средств

Биологическая доступность лекарственных средств

Для оказания терапевтического эффекта ЛС должно быть доставлено в те органы или ткани, в которых осуществляется его специфическое действие (в биофазу). При внутрисосудистом введении лекарство сразу и полностью попадает в кровеносное русло. При других путях введения (перорально, в/м, п/к и т. д.

) прежде чем попасть в кровоток, лекарственное вещество должно пройти ряд биологических мембран клеток (слизистой желудка, клеток печени, мышц и т. д. ) и только тогда какая-то часть его попадет в системный кровоток. Эффект препарата во многом зависит от того, какая часть от введенной дозы ЛС попадает в системный кровоток.

Этот показатель характеризует биологическую доступность средства (F). Таким образом, посуществу, биодоступность лекарства отражает концентрацию его у рецепторов, то есть в крови и тканях организма после всасывания. Естественно, что биодоступность одного и того же средства будет разная у каждого больного.

Очевидно, что при внутивенном введении лекарства биодоступность его равна приблизительно 100%, а при других путях введения биодоступность почти никогда не достигает 100%.

Различают абсолютную и относительную биодоступность.

Абсолютная биодоступность – это доля поглощенного препарата при внесосудистом введении по отношению к его количеству после в/венного введения.

Относительная биодоступность – определяет относительную степень всасывания лекарственного вещества из испытуемого препарата и из препаратов сравнения.

Другими словами, относительная биодоступность определяется для различных серий препаратов, для ЛС при изменении технологии производства, для препаратов, выпущенных различными производителями, для различных лекарственных форм.

Для определения относительной биодоступности могут использоваться данные об уровне содержания лекарственного вещества в крови или же его экскреции с мочой после одноразового или многократного введения. Этот термин важен при сравнении 2-х препаратов между собой.

Сравнительная биодоступность одних и тех же препаратов, сделанных разными фирмами (пример: кокарбоксиназа польского поисхождения и сделанная в г. Днепропетровске), определяется путем сопоставления химической, биологической и терапевтической эквивалентностей.

Химическая эквивалентность – это совпадение у препаратов не только химической формулы лекарств, но и совпадение изомерии, пространственной конфигурации атомов в молекуле лекарственного вещества.

Биологическая эквивалентность означает одинаковоую, равную концентрацию действующего вещества в крови при приеме препарата разных фирм.

Терапевтическая эквивалентность подразумевает одинаковый, равноценный терапевтический эффект.

Если перечисленные 3 характеристики совпадают, говорят, что ЛС обладают равной биодоступностью (биодоступны). В настоящее время имеется много примеров того, что аналогичные препараты биологически неэквивалентны вследствие различий в биодоступности. Практикующий врач должен помнить об этом, особенно при переводе больного с одного препарата на аналогичный препарат другой фирмы.

ОСНОВНЫЕ ВОПРОСЫ ФАРМАКОДИНАМИКИ

Фармакодинамика (ФД) – это раздел фармакологии, изучающий:

1) механизмы действия (то есть сущность процессов взаимодействия с тканевыми, клеточными или субклеточными рецепторами – специфическими или неспецифическими)

2) фармакологические эффекты (содержание и изменения влияния препарата в зависимости от возраста, пола больного, характера и течения заболевания, сопутствующей патологии)

3) локализацию действия лекарств.

Более коротко ФД можно определить как раздел фармакологии, изучающий действие лекарственных средств на организм.

Знание механизма действия ЛС позволяет врачу осмысленно выбрать необходимый препарат для лечения.

Основные механизмы действия лекарств включают:

¾  действие на специфические рецепторы (агонисты и антагонисты);

¾  влияние на активность ферментов (индукция и ингибирование);

¾  влияние на мембраны клеток;

¾  прямое химическое взаимодействие лекарств.

Термин рецепторприменяется к клеточной макромолекуле, с которой препарат связывается для достижения его эффекта. Наиболее важной группой рецепторов для лекарств являются протеины, физиологически работают как рецепторы эндогенных регуляторных лигандов (например, рецепторы гормонов, нейротрансмиттеров).

Многие лекарства действуют на такие рецепторы и часто являются высокоселективными благодаря специфичности физиологических рецепторов. Регуляторная активность рецептора может проявляться как следствие прямого действия на клеточные мишени, эффекторные протеины, или через промежуточные клеточные сигнальные молекулы (трансдуктор).

Взаимодействие рецептора, клеточной мишени и промежуточных молекул рассматривают как рецептор-эффекторные систему.

Рецепторы связанные с G-протеином.

Большое семейство рецепторов для многих существующих лекарств (биогенные амины, эйкозаноиды, пептидные гормоны, опиоиды, аминокислоты) включает гетеротримерные регуляторные протеины, связанные с гуанинтрифосфатом (G-протеины).

G-протеины являются сигнальными трансдукторами, передающие информацию от рецепторов эффекторным протеинам, таким как аденилатциклаза, фосфолипаза С, фосфодиэстеразы, Са2+ – и К+-ионные каналы мембрани.

Рецепторы для ферментов.Группа рецепторов с внутренней ферментной активностью включает протеинкиназы клеточной поверхности, распространяющие регуляторные сигналы через эффекторные протеины на внутренней поверхности клеточной мембраны.

Фосфорилирование протеинов может изменять биохимическую активность эффектора, или его взаимодействие с другими протеинами. Большинство рецепторов, является протеинкиназами, фосфорилируют тирозин в субстрате. Эта группа включает рецепторы к инсулину, факторам роста.

Некоторые рецепторные протеинкиназы фосфорилируют серин и треонин.

Для рецепторов, связывающих предсердный натрийуретический пептид, гуанилин и урогуанилин, внутриклеточной структурой является гуанилилциклаза, а не протеинкиназа. Гуанилилциклаза участвует в секреции вторичного мессенжера циклического гуанозинмонофосфата (ГМФ), активирующего циклическую ГМФ-зависимую протеинкиназу и активирует несколько нуклеотидных фосфодиэстераз.

Ионные каналы. Рецепторы для некоторых нейротрансмиттеров формируют селективные ионные каналы. Эта группа включает никотиновые холинергические рецепторы, рецепторы ГАМК, рецепторы для глутамата, аспартата и глицина.

Рецепторы регулирующих транскрипцию.Рецепторы для стероидных и тиреоидных гормонов, витамина D, ретиноидов – это растворимые протеины, которые связываются с ДНК и регулируют транскрипцию специфических генов.

Избирательная чувствительность лекарства к рецептору означает тот факт, что лекарственное вещество может, во-первых, связываться с рецептором, то есть обладает аффинитетом или сродством к нему. Другими словами, сродство или аффинитет означает способность лекарственного вещества к связи с рецептором.

ЛС, действие которых связано с прямым возбуждением или повышением функциональных возможностей (способностей) рецепторов, называются АГОНИСТАМИ, а вещества, препятствующие действию специфических агонистов, – АНТАГОНИСТАМИ.

Другими словами, если лекарственное вещество имеет обе характеристики (то есть и сродство и внутреннюю активность), то оно является агонистом. Поэтому, агонист – это вещество с высоким аффинитетом к рецептору и высокой внутренней активностью.

Если же вещество имеет способность только связываться с рецептором (то есть обладает сродством), но при этом неспособно вызывать фармакологические эффекты, то оно вызывает блокаду рецептора и называется антагонистом.

Препараты, имеющие то же сродство к рецептору, что и агонист, или более слабое, но обладающие менее выраженной внутренней активностью, называются частичными агонистами или агонистом-антагонистом. Эти препараты, используемые одновременно с агонистами, снижают действие последних, вследствие их способности занимать рецептор.

Пример: атропин – имеет большую активность, чем ацетилхолин (эндогенный медиатор). Атропин провзаимодействует с рецепторами, но так как не имеет внутренней активности, физиологического эффекта не вызовет. Ввиду большего сродства к рецептору по сравнению с ацетилхолином, он будет препятствовать действию агониста, а именно ацетилхолина, а значит являться его антагонистом.

Лекарственные вещества могут действовать подобно или противоположно эндогенным медиаторам. Если лекарственное вещество действует подобно медиатору (ацетилхолину, норадреналину и др. ), – такое вещество называется МИМЕТИК. Mim – корень “мим”, пантомима, мимикрия. Отсюда холиномиметик, адреномиметик.

Лекарственное вещество, препятствующее взаимодействию медиатора с рецептором, называется блокатором (холиноблокатор, адреноблокатор, гистаминоблокатор и т. д. ).

В литературе можно встретить термин “литик” (лизис – растворение, физический процесс). Термин довольно старый, однако иногда используется (холинолитик, адренолитик). Таким образом, термины “литик” и “блокатор” используют как синонимы.

Виды действия лекарств:

1) местное действие – действие вещества, возникающее на месте его приложения. Пример: использование местных анестетиков – внесение раствора дикаина в полость конъюктивы.

Использование 1% раствора новокаина при экстракции зуба.

Этот термин несколько условен, так как истинно местное действие наблюдается крайне редко, в силу того, что так как вещества могут частично всасываться, либо оказывать рефлекторное действие.

2) рефлекторное действие – это когда ЛС действует на путях рефлекса, то есть оно влияет на экстеро- или интерорецепторы и эффект проявляется изменением состояния либо соотвтетствующих нервных центров, либо исполнительных органов.

Так, использование горчичников при патологии органов дыхания улучшает их трофику рефлекторно (эфирное горчичное масло стимулирует экстерорецепторы кожи). Препарат цититон (дыхательный аналептик) оказывает возбуждающее действие на хеморецепторы каротидного клубочка и, рефлекторно стимулируя центр дыхания, увеличивает объем и частоту дыхания.

Другой пример – использование нашатырного спирта при обмороке (аммиак), рефлекторно улучшающего мозговое кровообращение и тонизирующго жизненные центры.

3) резорбтивное действие – это когда действие вещества развивается после его всасывания (резорбция – всасывание; лат. – resorbeo – поглащаю), поступления в общий кровоток, затем в ткани. Резорбтивное действие зависит от путей введения лекарственного средства и его способности проникать через биологические барьеры.

Если вещество взаимодействует только с функционально одноз начными рецепторами определенной локализации и не влияет на другие рецепторы, действие такого вещества называется ИЗБИРАТЕЛЬНЫМ. Так, некоторые курареподобные вещества (миорелаксанты) довольно избирательно блокируют холинорецепторы концевых пластинок, вызывая расслабление скелетных мышц.

Действие препарата празозина связано с избирательным, блокирующим постсинаптические альфа-один адренорецепторы эффектом, что ведет в конечном счете к снижению артериального давления.

Основой избирательности действия ЛС (селективности) является сродство (аффинитет) вещества к рецептору, что определяется наличием в молекуле этих веществ определенных функциональных группировок и общей структурной организацией вещества, наиболее адекватной для взаимодействия с данными рецепторами, то есть КОМПЛЕМЕНТАРНОСТЬЮ.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/10_246510_biologicheskaya-dostupnost-lekarstvennih-sredstv.html

Биодоступность – это что такое? Биодоступность лекарственных веществ

Биологическая доступность лекарственных средств

Биодоступность – это объем лекарства, который достиг основного места своего действия в человеческом или животном организме. Этим термином обозначается количество утерянных и сохраненных полезных веществ, которые благотворно влияют на организм. Таким образом, при высокой степени биодоступности можно судить о малом количестве утерянных лечебных свойств любого препарата.

Как определяется данный показатель?

При стандартных формах исследования биодоступность лекарственных веществ выявляется методом определения объема лекарства в крови, то есть тем количеством, которое достигло кровеносной системы.

При различных методах введения она имеет различные показатели. Так, при внутривенном способе биодоступность достигает 100 %.

А если имела место пероральная биодоступность, то объем значительно снижается за счет неполного всасывания и распада лекарства на отдельные компоненты.

Данный термин также применяется и в фармакокинетике для подсчета правильной дозировки, которой следует придерживаться больному при различных приемах введения препарата в организм.

Выделяют две стадии биодоступности:

  1. Абсолютная.
  2. Относительная.

Понятие абсолютной биологической доступности

Абсолютная биодоступность — это показатель, образующийся в результате сравнительного анализа биологической доступности лекарства, введенного любым, кроме внутривенного, способом и доступности препарата, введенного внутривенно. Отражается он в виде площади под кривой «объем – время», сокращенно «ППК». Осуществить подобную процедуру можно только при выполнении такого условия, как употребление различной дозировки разными методами введения в организм.

Для определения количества абсолютной биологической доступности осуществляется проведение фармакокинетического исследования, целью которого является получение сравнительного анализа «объема лекарства по отношению ко времени» для внутривенного и иного метода внедрения. Таким образом, абсолютная биодоступность лекарственных средств – это ППК для измененной дозировки, получаемой в ходе деления ППК иного метода введения и внутривенного.

Понятие относительной биологической доступности

Относительная биодоступность – это ППК препарата, подвергшаяся сравнению с другой разновидностью этого же препарата, принятого за основу или введенного иным способом. Основа – это внутривенный способ введения, характеризующийся абсолютной биодоступностью.

Для получения данных о количестве относительной биологической доступности в организме применяются показатели, характеризующие объем лекарства в кровеносной системе или же при его выведении из организма вместе с мочой после однократного или множественного применения. С целью получения высокого процента достоверности при анализировании применяется перекрестный метод изучения. Он позволяет максимально полно устранить разность результатов, полученных при физиологическом и патологическом состояниях организма.

Чтобы определить, низкая биодоступность в препарате или высокая, учеными применяются следующие виды методик:

  1. Сравнительный анализ измененного объема препарата между изучаемой и основной формой лекарственного средства в плазме или моче. Такое исследование позволяет максимально полно определить объем абсолютной биодоступности.
  2. Измерение количества разных препаратов, введенных в организм одинаковым способом. Эта методика позволяет определить относительную биологическую доступность.
  3. Определение объема относительной биодоступности путем внедрения лекарств различными способами.
  4. Изучение результатов уровня объема лекарства в крови или моче. Выполняется для определения показателя относительной биодоступности.

Плюсы применения ВЭЖХ

ВЭЖХ – еще одна методика определения биодоступности – хромотография, обладающая высокой эффективностью в работе, применяемая при необходимости разделения сложных веществ на простые. Используется наиболее часто при изучении биодоступности, так как имеет следующие положительные качества:

  1. Отсутствие пределов по устойчивости к температуре у изучаемых таким образом образцов.
  2. Дает возможность работы с водными растворами, что значительно снижает продолжительность анализирования и улучшает этап подготовки биологических проб.
  3. Отсутствие необходимости в получении производных изучаемого препарата.
  4. Оборудование, применяемое при данном методе изучения, обладает отличной производительностью и эффективностью.

Что способно повлиять на общий объем биодоступности?

Стандартно объем препарата, попадаемого в организм невнутривенным путем, равен меньше 1. Однако он может быть еще меньше из-за некоторых дополнительных нюансов. Таким образом, факторы, влияющие на биодоступность, – это:

  1. Физические свойства препарата.
  2. Форма лекарства и продолжительность его воздействия на организм.
  3. Время приема – до еды или после.
  4. Быстрота очищения желудочно-кишечного тракта.
  5. Воздействие иных препаратов на данное лекарство.
  6. Реакция средства на некоторые продукты питания.

Биоэквивалентность

Еще одну разновидность имеет биодоступность, это биоэквивалентность. Возникло данное понятие в связи с проведением фармакокинетических и биофармационных исследований, в ходе которых было выявлено, что терапевтическое неравенство лекарств, содержащих одни и те же вещества, имеет прямую взаимосвязь с разностью в биодоступности.

Таким образом, биоэквивалентность – это обеспечение крови и ткани организма одинаковым количеством веществ.

Основные показатели биоэквивалентности

Для определения биоэквивалентности в препаратах применяются следующие показатели:

  1. Повышенная или наиболее полная биодоступность таблеток в кровеносной системе. Исследуется путем составления графика, в котором две кривые отображают количество препарата, введенного различными методами, а прямая линия обозначает минимум объема лекарства, необходимого для получения терапевтического воздействия.
  2. Продолжительность действия высокого содержания препарата. Данный показатель отображает быстроту всасывания и лечебного воздействия на организм. Понять всю суть данного показателя можно на примере снотворного препарата. Небольшое терапевтическое воздействие он окажет уже через полчаса или 2 – в зависимости от формы препарата. Лечебную функцию снотворное будет выполнять, в зависимости от той же формы, от 5 до 8 часов. Таким образом, несмотря на схожесть в своем воздействии, одна форма будет служить для предотвращения нарушений сна, а вторая – при малом времени покоя.
  3. Изменение количества лекарства в крови по истечении определенного времени.

Запуск лекарства в реализацию

Перед тем как запустить препарат в продажу, следует изучить биоэквивалентность и биодоступность лекарственных средств, это очень важно. С этой целью осуществляется следующий порядок действий:

  1. Производитель подает заявку в Фармакологический государственный комитет о желании выпустить свое лекарство в реализацию. Ведомство, в свою очередь, выдает разрешение на проведение исследований по биоэквивалентности с применением двух образцов: уже существующего и нового.
  2. Изучение осуществляется на обычных или обладающих каким-либо заболеванием добровольцах в одинаковой дозировке. При этом каждое исследование оплачивается самим производителем.

Осуществляется подобная процедура в специальных медицинских учреждениях или лабораториях с привлечением сторонних специалистов. При подборе кандидатов на проведение опытов должны учитываться следующие требования:

  1. Их общее число не может быть меньше 12. Нередки моменты, когда количество добровольцев увеличивается до 25. В основном происходит это в случае высокого межиндивидуального разброса в фармакокинетических параметрах.
  2. Возраст добровольцев должен достигать совершеннолетия и не быть выше 60 лет.
  3. Вес каждого человека не должен быть меньше или больше, чем на 20 % от идеального веса для данного пола, возраста и роста.
  4. Не допускается проведение исследований на людях, страдающих сердечно-сосудистыми или хроническими заболеваниями. Исключение составляет та группа лиц, которой рекомендуется применение подобного препарата.

Как осуществляется подготовка добровольцев?

Перед тем как подписать согласие на проведение исследования, определяющего биодоступность вещества, каждый доброволец должен получить следующий набор сведений:

  1. Основная задача изучения.
  2. Продолжительность процедуры.
  3. Основные фармакологические данные о препарате.
  4. Метод введения лекарства внутрь.
  5. Применяемая дозировка.
  6. Воздействие лекарства на организм.
  7. Недостатки данного препарата.
  8. Нюансы питания в процессе исследования.
  9. Условия выплаты страхового полиса.

После того как доброволец подписывает договор и соглашение о неразглашении, исследователями осуществляется полноценное медицинское обследование. Оно включает в себя:

  1. Общий осмотр врачей.
  2. Анализ крови и мочи.
  3. Биохимия крови.
  4. Анализ крови на ВИЧ, сифилис и гепатит.
  5. Определение беременности у женщин.

Каждая палата оснащается всем необходимым для удобного изучения. Кроме того, с любой страховой компанией заключается соглашение о получении страховки в случае неудачного эксперимента. Дополнительно обговариваются условия и количество вознаграждения.

Кто допускается к исследованиям?

Работу с добровольцами осуществляет исследователь. Он должен отвечать следующим условиям:

  1. Исследователь должен обладать теорией и практикой по всем химическим и фармакологическим направлениям.
  2. На руках у него должен иметься сертификат об окончании курсов.
  3. Исследователь должен иметь полное представление о том, что такое биодоступность препарата (это главное) и какое именно лекарство он должен изучить.

Кроме исследователя в группу должны входить медсестры. В их обязанности входит:

  1. Контроль за здоровьем пациентов.
  2. Выполнение режимных моментов.
  3. Установка катетеров.
  4. Изъятие некоторого количества крови для анализа у больных.

Дополнительно в группу включают:

  1. Аналитика и лаборантов.
  2. Фармакокинетика.
  3. Математика.

Составление отчета о проведенной работе

По завершении всех исследовательских действий главным врачом оформляется бумага, в которой должны найти отражение следующие пункты:

  1. Общий план фармакологических исследований. Он должен обязательно быть утвержден Фармакологическим государственным комитетом.
  2. Все данные о добровольцах. Должны быть указаны демографические, антропометрические и клинические данные. Последние указываются при задействовании больных.
  3. Номера серий и наименования компаний-производителей, а также длительность их лечебного воздействия.
  4. Вариант приема препарата и эффективная дозировка.
  5. Метод отбора биологического материала и его предварительная переработка.
  6. Последовательность изложения аналитики с внедрением метрологических показателей и демонстрационных хромотограмм.
  7. Полное изложение всего хода фармакокинетического исследования и оценивание биологической эквивалентности. Здесь же указываются все применяемые в исследовании программы.
  8. Итоги выявления количества лекарства в биологических пробах.
  9. Медицинские карты добровольцев и индивидуальные профили.
  10. Итоги дисперсионного изучения значений фармакокинетики, применяемого для оценки биологической эквивалентности.

Последовательность действий при биоэквивалентности

Изучение на биодоступность лекарственных средств осуществляется в одинаковой дозировке сразу на двух препаратах: производном и оригинале. В случае заявки на изучение нескольких препаратов исследование осуществляется отдельно для каждого.

Промежуток времени между приемом дженерика и оригинала определяется длительностью перемещения лекарства в организме, периодом частичного выведения. Он должен быть равен в среднем 6 периодам частичного выведения. Материалом, применяемым для изучения, может быть плазма, сыворотка или кровь. Она забирается из вены на сгибе локтя через катетер. Отбор должен производится трижды:

  1. В момент первичного роста содержания препарата. Должно быть около 3 точек на кривой «концентрация – время».
  2. В момент повышенного всасывания. Применяется около 5 точек.
  3. В момент пониженного всасывания. Используется около 3 точек.

Время исследования можно считать приемлемым, если величина площади под кривой «концентрация – время» на расстоянии от нуля до последней пробы занимает около 80 %.

Источник: //FB.ru/article/278588/biodostupnost---eto-chto-takoe-biodostupnost-lekarstvennyih-veschestv

Ваш Недуг
Добавить комментарий