Авторадиография

Авторадиография

Авторадиография

Детекторами ионизирующего излучения называют приборы, регистрирующие a- и b-частицы, рентгеновское и g-излучения, протоны и т.д.

Наблюдение частиц возможно лишь в том случае, если они заряжены и имеют достаточно большую скорость. Нейтральные частицы (фотоны и нейтроны) можно наблюдать, когда они в результате взаимодействия с веществом образуют заряженные частицы.

В настоящее время используются следующими методами наблюдения частиц:

1) метод камер, 2)ионизационные (газоразрядные) счетчики всех систем, 3) метод толстослойных фотографических пластинок, 4) полупроводниковые детекторы, 5) сцинтилляционные детекторы, 6) черенковские детекторы.

1.а) Метод камеры Вильсона основан на том, что в пересыщенном паре ионы являются центрами конденсации. Пересыщение пара в камере достигается путем быстрого адиабатического расширения объема камеры, содержащего насыщенный пар.

Если при этом в камеру попадает заряженная частица, то при движении она создает цепочку ионов, присутствие которых обнаруживается по образованию вокруг них капелек. Освещая камеру после расширения, можно наблюдать и фотографировать пути (треки) отдельных частиц.

Если поместить камеру в сильное магнитное поле, то каждый трек будет изогнутым; это позволяет по радиусу кривизны определять заряд, массу и скорость частицы.

б) Пузырьковая камера. Она представляет собой сосуд, заполненный сжиженным газом (пропаном, пентаном, фреоном, водородом, гелием) при высоком давлении и при температуре, близкой к точке кипения.

Действие пузырьковой камере основано на том, что заряженные частицы при своем движении создают вдоль траектории в жидкости центры парообразования в виде пузырьков, которые можно наблюдать или фотографировать.

Они позволяют наблюдать частицы с высокой энергией.

2. Ионизационные счетчики основаны на возникновении газового разряда вследствие ионизации газа, вызванного заряженной частицей.

Эти счетчики можно разделить на ионизационные камеры и счетчики с самостоятельным разрядом (газоразрядные счетчики). Рассмотрим ионизационную камеру.

часть ее – плоский, шаровой или цилиндрический конденсатор, наполненный газом (воздухом, аргоном, фтористым бромом и др.) при давлении от 1 атм и выше. При движении в камере заряженной частицы образуются ионы и возникает кратковременный ток в виде импульса, который можно усилить. Следовательно, каждое прохождение заряженной частицы может быть зарегистрировано (до 107-108 частиц в секунду).

В ионизационных камерах для рентгеновских и g-лучей ионизация проводится теми электронами, которые образуются при поглощении излучения в стенках камеры и в газе.

Ионизационная камера пригодна и для измерения потока медленных нейтронов. Для этого ее наполняют трехфтористым бором (ВГ3) и количество нейтронов измеряется по ионизации, вызванной ядрами гелия и лития, образующимися при расщеплении бора нейтронами.

Действие счетчиков газоразрядных основано на возникновении в газе самостоятельного разряда при попадании в него заряженной частицы. Примером является счетчик Гейгера-Мюллера.

Он состоит из цилиндрической камеры, наполненной газом при давлении 100 – 200 мм рт.ст. По оси камеры на изоляторах натянутая тонкая (Ø 0,0075 – 0,25 мм) нить металл-анод.

Между нитью (+) и стенкой (-) приложена разность потенциалов, немного меньшая той, при которой начинается самостоятельный разряд в газе. В цепь введено большое (порядка 109Ом) сопротивление. Попадание быстрой заряженной частицы в камеру вызывает лавинный разряд.

Возникающий при этом ток, проходя через сопротивление, вызывает на нем падение напряжение, на величину которого уменьшается разность потенциалов между нитью и стенкой счетчика.

Разряд при этом обрывается, а через некоторый промежуток времени разность потенциалов на счетчике вновь достигает прежней величины. При появлении новой заряженной частицы вновь возникает разряд и т.д.

Важной особенностью счетчиков Гейгера-Мюллера и вообще счетчиков с самостоятельным разрядом является зависимость скорости счета за секунду № от напряжения на счетчике U. Плато-участок, на протяжении которого число отсчетов в секундах не зависит от напряжения – т.е. от U2 до U3 это – рабочий интервал U.

3. Метод толстослойных фотографических пластинок основан на том, что в фотоэмульсии (из бромистого серебра), через которую проходит заряженная частица, получается изображение траектории частицы. Этот метод оказался особенно плодотворным при изучении космических лучей и взаимодействия быстрых заряженных частиц с ядрами вещества.

4.Сцинтилляционные счетчики основаны на явлении люминесценции вещества под влиянием ударов зараженных частиц или фотонов. Первым был сликтарископ (экран из ZnS). Сейчас применяют ФЭУ, позволяющий регистрировать слабые световые потоки от отдельных сцинтилляций.

Сцинтилляционные счетчики отличаются высокой чувствительностью и большой разрешающей способностью во времени, т.е. они могут регистрировать большое число частиц в единице времени.

Они пригодны для регистрации и нейтральных частиц-нейтронов и фотонов – по вторичным электронам, которые они создают в веществе сцинтиллятора.

5.Полупроводниковые детекторы основаны на свойстве полупроводников изменять свою электропроводность под действием обручения нейтронами или g-лучами, для регистрации которых они и применяются.

6.Черенковские счетчики основаны на открытом С.И. Вавиловым и П.А. Черенковым излучении, которое вызывается электронами, когда они движутся в чистой жидкости или твердом диэлектрике со скоростью, большей чем фазовая скорость света в этих средах (т.е.

> ), но меньше скорости света в вакууме, поэтому движение электрона со скоростью > (но меньше, чем С) возможно и не противоречит теории относительности. Световая вспышка, порождаемая быстродвижущейся заряженной частицей, превращается с помощью ФЭУ в импульс тока.

Для того чтобы заставить сработать такой счетчик, энергия частицы должна превысить пороговое значение, определяемое условием: .

Дозиметрическими приборами, или дозиметрами, называют устройства для измерения доз ионизирующих излучений или величин, связанных с дозами.

Дозиметры состоят из детектора ядерных излучений и измерительного устройства. Обычно они проградуированы в единицах дозы или мощности дозы.

В зависимости от используемого детектора различают ионизационные, люминесцентные, полупроводниковые, фотодозиметры и другие.

Дозиметры для измерения экспозиционной дозы рентгеновского излучения или ее мощности называют рентгенометрами. В качестве детектора – ионизационная камера. Заряд, протекающий в цепи камеры, пропорционален экспозиционной дозе, а так – ее мощности.

Индивидуальные дозиметры – представляют собой миниатюрную цилиндрическую ионизационную камеру, которая предварительно заряжается. В результате ионизации происходит разрядка камеры, что фиксируется вмонтированным в нее электрометром.

Для измерения активности или концентрации радиоактивных изотопов применяют приборы, называемые радиометрами.

Авторадиография. Метод заключается в получении на фотопленке отпечатков при контактном действии каких-либо тел, содержащих радиоактивные вещества (обычно это срез органа или ткани). По степени почернения фотоэмульсии можно определить содержание и распределение радиоактивных веществ в исследуемом объекте.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/12_106479_detektori-ioniziruyushchego-izlucheniya-ionizatsionnie-kameri.html

Ауторадиография

Авторадиография

Ауторадиография (авторадиография, радиоавтография) — это способ получения фотографического изображения какого-либо объекта посредством воздействия на фоточувствительную эмульсию излучений от содержащихся в этом объекте радиоактивных веществ. В медицине и биологии метод ауторадиографии применяют для обнаружения малых количеств радиоактивных изотопов и изучения их распределения в срезах целых органов или тканей и в отдельных клетках.

Ауторадиография (радиоаутография, или авторадиография) — метод изображения материалов, в частности тканей живых организмов, при помощи фиксации излучения содержащихся в них радиоактивных веществ.

Ауторадиография незаменима в случаях содержания малых количеств радиоактивного элемента, интенсивность которого не поддается измерению счетчиками.

Ауторадиография позволяет исследовать распределение радиоактивного элемента в срезе ткани органа, характер выведения этого элемента из организма (рис. 2) и накопление его в разных системах организма.

Существуют контрастная и следовая ауторадиография. При первой срез ткани приводится в соприкосновение на некоторое время с фотоэмульсией для получения отпечатка. О характере распределения и количестве радиоактивного элемента в срезе судят по оптической плотности почернения фотослоя, определяемой при помощи фотометрии.

При следовой ауторадиографии о виде излучения и о количестве элемента судят путем подсчета числа треков на фотоэмульсии (под микроскопом).

Модификация ауторадиографии — гистоауторадиография, при которой срез ткани, приведенный в соприкосновение с ядерной эмульсией, вместе с ней проявляется, фиксируется и окрашивается. В противоположность ауторадиографии метод имеет высокую разрешающую способность.

В экспериментальных исследованиях гистоауторадиографию применяют для изучения процессов на клеточном уровне. В клинике она позволяет определять радиоактивность крови (рис. 1), лимфатических узлов и др.

Морфологическое исследование в сочетании с гистоауторадиографией дает возможность на одном препарате под микроскопом изучить локализацию радиоактивных элементов в тончайших структурах ткани, клеток (рис. 3), характер поражения ткани в местах отложения этих элементов (рис.

4), количественное распределение их на основе подсчета числа треков или зерен галоидного серебра на определенной площади, а по длине и форме трека — выявить природу излучения. Треки α-частиц прямолинейны, β-частиц — зигзагообразны, ү-излучение дает общий фон.

Четкость изображений с высокой разрешающей способностью зависит от качества эмульсии, а также тщательности приготовления тонкого среза, тщательности соблюдения минимального расстояния между срезом и эмульсией и короткости экспозиции.

Для контрастной ауторадиографии применяют оптические и ядерные фотоэмульсии, для следовой ауторадиографии — ядерные фотопластинки типа MP, для гистоауторадиографии α-излучающих материалов — ядерные фотопластинки типа А-2 или MP, эмульсию А, Р. При исследовании β-излучающих материалов используют фотопластинки типа MP или МК, эмульсию Р. Эти же эмульсии применяются для микробиологических и других исследований.

Рис. 1. Гистоауторадиограмма мазка крови собаки: треки α-частиц Ро210 в плазме (метод жидкой эмульсии).Рис. 2.

Ауторадиограмма почки крысы: наибольшая плотность почернения фотоэмульсии на месте контакта сосочка органа показывает хорошее выведение Sr90 через день после попадания его в организм (контрастная ауторадиография).

Рис.

3. Гистоауторадиограмма гистиоцита: скопление треков α-частиц Ро210 в протоплазме (метод жидкой эмульсии).

Рис. 4. Гистоауторадиограмма кости бедра крысы. Накопление Pu239 в клетках эндоста и периоста. Монтированный метод.

Авторадиография. Метод изучения распределения радиоактивных изотопов в различных тканях и органах. Основан на использовании фотоэмульсий. Между срезом исследуемой ткани и фотоэмульсией создается контакт.

Испускаемые объектом частицы бомбардируют слой эмульсии и, воздействуя на зерна бромистого серебра, вызывают образование скрытого изображения.

Последующая обработка фотоматериала дает возможность сделать скрытое изображение видимым.

Р. М. Шевченко (1962) предлагает следующую модификацию метода авторадиографии.

За 15—48 часов до операции пациенту дают 10 (при тиреотоксикозе) или 100 микрокюри радиоактивного йода (при злокачественной опухоли щитовидной железы, неспецифических тиреоидитах или эутиреоидном зобе).

Время между приемом изотопа и операцией у больных тиреотоксикозом должно быть меньшим, чем у больных прочими заболеваниями щитовидной железы.

Из различных участков щитовидной железы, удаленной во время операции, вырезают 5—6 кусочков ткани толщиной 2,0—2,5 мм так, чтобы в кусочек попала и неизмененная ткань. Отделенные кусочки ткани фиксируют в смеси Карнуа (1 часть ледяной уксусной кислоты, 3 части хлороформа, 6 частей абсолютного спирта). Смесь готовят ex tempore.

Объем ее превышает объем фиксируемой ткани в 15 раз. Затем кусочки ткани помещают в абсолютный спирт на 30 минут, бензол I на 30 минут, бензол II на 30 минут при температуре 56°. После этого их проводят через четыре смены парафина, каждая по 30 минут при температуре 56°.

Для создания необходимой температуры наряду с термостатом можно использовать предварительно отрегулированный сушильный шкаф.

После изготовления парафиновых блоков производят серийные срезы ткани толщиной 5—8 микрон. Срезы расправляют в теплой воде и наклеивают альбумином на предметные стекла. На каждом стекле монтируют 2—3 среза. Стекла следует просушить в термостате во избежание склеивания их с флюорографической пленкой.

Флюорографическую пленку вырезают по размеру предметного стекла, удалив перфорированную ее часть. Во избежание нанесения артефактов при подготовке пленки следует воспользоваться моделью стекла из мягкого картона.

Приготовленные кусочки пленки накладывают эмульсионным слоем на фиксированные на предметном стекле срезы, накрывают вторым предметным стеклом, плотно прибинтовывают и заворачивают в черную светонепроницаемую бумагу.

Для получения хорошего контакта эмульсии со всей поверхностью среза на одном стекле монтируют срезы одинаковой толщины и между обратной стороной пленки и стеклом помещают эластическую прокладку из тонкой губки. Автографы экспонируются в прохладном сухом месте, во влагонепроницаемой посуде.

Оптимальный срок экспозиции для каждой исследуемой железы устанавливают опытным путем. Для этого необходимо один из автографов проявить через двое суток, а все последующие в зависимости от плотности отпечатка на первой пленке. Подготовку и фотографическую обработку пленки производят в полной темноте.

Изучение автографов указывает на тесную взаимосвязь функциональной активности и степени дифференциации ткани щитовидной железы. На автографах срезов железы видна различная способность участков озлокачествления ткани, узлов и внеузловой ткани усваивать радиоактивный йод.

Источник: //www.medical-enc.ru/1/autoradiography.shtml

Ваш Недуг
Добавить комментарий